Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally friendly corrosion protection for rivets

28.08.2012
Environmentally friendly corrosion protection for rivets used in lightweight and composite structures
Fraunhofer FEP has developed a vacuum process for coating rivets and other small parts as bulk products.

New lightweight design concepts help to reduce the energy that is consumed by cars and rail vehicles. A lower intrinsic weight means lower fuel consumption for cars with combustion engines, longer travel distances for modern electric cars, or a lower required drive power for rail vehicles.

Randomexamination after the coating process
© Fraunhofer FEP

The new combinations of materials which make this possible comprise aluminum alloys, high-strength steel, and fiber reinforced plastics. These heterogeneous materials are joined together mechanically using rivets and glued with adhesives. The rivet elements must be able to withstand very high loads: Vibrations at speeds of more than 100 km/h, aggressive ambient air, high temperatures, and a strong electrochemical potential field due to the very different electrochemical potentials of the incorporated materials.

Effective protection of the rivets against corrosion and wear reduces the maintenance effort and lowers the risk of material failure.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP has developed a deposition process for efficiently coating bulk rivets with corrosion protection layers. In a slowly rotating drum the rivets are continually and gently mixed and simultaneously coated in the metal vapor. In a pilot plant up to 30 kg rivets can be coated with a multilayer coating stack using plasma enhanced high-rate deposition and pulse magnetron sputtering. By applying the two vacuum technologies a layer system of alternating aluminum layers of about 1 µm thickness and much thinner sputtered diffusion barrier layers can be achieved. Standard test procedures such as the VDA corrosion test (VDA 621-415) demonstrated the excellent corrosion resistance of the coated rivets. Vacuum coating has two major advantages over the galvanic coating methods used until now: Firstly, it is eco-friendly with regard to the materials used. Secondly, hydrogen embrittlement, which can cause fatigue in high-strength steel and titanium substrates, does not occur in vacuum coating processes.

Dr. Heidrun Klostermann, head of the business unit „Coating of components“ at Fraunhofer FEP, describes further potential applications for the process: „Besides rivets, other small mass-produced components such as screws / bolts, pins, balls, links, or nails of size between 0.2 and 4 cm can be coated as bulk products. By combining different vacuum processes a broad range of materials can be deposited. Hence, the technology is ready for plenty of other coating tasks for bulk products.“

Fraunhofer FEP will present samples coated with the described process at PSE 2012 (13th International Conference on Plasma Surface Engineering) in Garmisch-Partenkirchen from 10-14 September 2012. For further information please visit us at our booth or go to our website:
http://www.fep.fraunhofer.de/Components

Scientific contact:
Dr. Heidrun Klostermann
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-367
heidrun.klostermann@fep.fraunhofer.de
www.fep.fraunhofer.de

Press contact:
Annett Arnold, M.Sc.
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/presse

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>