Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmentally friendly corrosion protection for rivets

28.08.2012
Environmentally friendly corrosion protection for rivets used in lightweight and composite structures
Fraunhofer FEP has developed a vacuum process for coating rivets and other small parts as bulk products.

New lightweight design concepts help to reduce the energy that is consumed by cars and rail vehicles. A lower intrinsic weight means lower fuel consumption for cars with combustion engines, longer travel distances for modern electric cars, or a lower required drive power for rail vehicles.

Randomexamination after the coating process
© Fraunhofer FEP

The new combinations of materials which make this possible comprise aluminum alloys, high-strength steel, and fiber reinforced plastics. These heterogeneous materials are joined together mechanically using rivets and glued with adhesives. The rivet elements must be able to withstand very high loads: Vibrations at speeds of more than 100 km/h, aggressive ambient air, high temperatures, and a strong electrochemical potential field due to the very different electrochemical potentials of the incorporated materials.

Effective protection of the rivets against corrosion and wear reduces the maintenance effort and lowers the risk of material failure.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP has developed a deposition process for efficiently coating bulk rivets with corrosion protection layers. In a slowly rotating drum the rivets are continually and gently mixed and simultaneously coated in the metal vapor. In a pilot plant up to 30 kg rivets can be coated with a multilayer coating stack using plasma enhanced high-rate deposition and pulse magnetron sputtering. By applying the two vacuum technologies a layer system of alternating aluminum layers of about 1 µm thickness and much thinner sputtered diffusion barrier layers can be achieved. Standard test procedures such as the VDA corrosion test (VDA 621-415) demonstrated the excellent corrosion resistance of the coated rivets. Vacuum coating has two major advantages over the galvanic coating methods used until now: Firstly, it is eco-friendly with regard to the materials used. Secondly, hydrogen embrittlement, which can cause fatigue in high-strength steel and titanium substrates, does not occur in vacuum coating processes.

Dr. Heidrun Klostermann, head of the business unit „Coating of components“ at Fraunhofer FEP, describes further potential applications for the process: „Besides rivets, other small mass-produced components such as screws / bolts, pins, balls, links, or nails of size between 0.2 and 4 cm can be coated as bulk products. By combining different vacuum processes a broad range of materials can be deposited. Hence, the technology is ready for plenty of other coating tasks for bulk products.“

Fraunhofer FEP will present samples coated with the described process at PSE 2012 (13th International Conference on Plasma Surface Engineering) in Garmisch-Partenkirchen from 10-14 September 2012. For further information please visit us at our booth or go to our website:
http://www.fep.fraunhofer.de/Components

Scientific contact:
Dr. Heidrun Klostermann
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-367
heidrun.klostermann@fep.fraunhofer.de
www.fep.fraunhofer.de

Press contact:
Annett Arnold, M.Sc.
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de/presse

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>