Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entangled frameworks limber up

20.09.2010
The degree of interconnectivity of molecular frameworks in microporous materials influences their structural flexibility and gas sorption

The quest to tune the three-dimensional (3D) molecular frameworks of materials called porous coordination polymers (PCPs) has taken a step forward thanks to a research team led by Ryotaro Matsuda and Susumu Kitagawa at the RIKEN SPring-8 Center in Harima and Kyoto University, Japan. The team, with members from Osaka Prefecture University, has described the influence of interpenetration of PCPs on the structural flexibility and gas sorption behavior of these materials1, which show great potential for use in gas storage, heterogeneous catalysis and as separation materials.

The interpenetrated molecular frameworks of PCPs are composed of metal ions and bridging organic ligands. Materials scientists initially thought that interpenetration would reduce the available capacity of the voids within the structure. However, other researchers showed recently that such entangled structures exhibit high gas-uptake, as a result of increased internal surface area. Interpenetration also increases the thermal stability of flexible frameworks.

These findings prompted Matsuda, Kitagawa and colleagues to make PCPs with the same chemical components but with either two-fold or three-fold interpenetration. Both forms of the 3D frameworks were made using a solvent templating method and were composed of zinc atoms and carboxylate- and pyridyl-based organic ligands. The two forms allowed the researchers to test the correlation between various physical properties and the degree of entanglement of the polymers.

Crystal structure analyses of the two forms indicated that non-covalent interactions, namely ð–ð interactions, in the three-fold structure are more significant than in the two-fold structure. Consequently, the two-fold structure has a more flexible structure and is of lower thermal stability than the more rigid three-fold PCP.

Using coincident x-ray powder diffraction and adsorption measurements, the team also showed that the two forms of structures have completely different carbon dioxide (CO2) adsorption behavior. The two-fold structure can adsorb four times the amount of saturated CO2 than the three-fold structure, owing to its greater flexibility and dynamic capability. Sorption occurs as a stepwise progression as a result of crystallographic transformations triggered by the addition and removal of guest molecules.

“The next challenge is the control of adsorption properties by external stimuli such as light or magnetic field to realize on-demand gas separation and storage,” says Matsuda. “This kind of material could be used to separate CO2 which is discharged from steelworks or to remove CO2 and hence keep air fresh in a spaceship.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

Journal information

1. Bureekaew, S., Sato, H., Matsuda, R., Kubota, Y., Hirose, R., Kim, J., Kato, K., Takata, M. & Kitagawa, S. Control of interpenetration for tuning structural flexibility influences sorption properties. Angewandte Chemie International Edition published online 2 July 2010 (doi: 10.1002/anie.201002259).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6390
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Transporting spin: A graphene and boron nitride heterostructure creates large spin signals
16.08.2017 | Graphene Flagship

nachricht From hot to cold: How to move objects at the nanoscale
10.08.2017 | Scuola Internazionale Superiore di Studi Avanzati

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>