Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Entangled frameworks limber up

20.09.2010
The degree of interconnectivity of molecular frameworks in microporous materials influences their structural flexibility and gas sorption

The quest to tune the three-dimensional (3D) molecular frameworks of materials called porous coordination polymers (PCPs) has taken a step forward thanks to a research team led by Ryotaro Matsuda and Susumu Kitagawa at the RIKEN SPring-8 Center in Harima and Kyoto University, Japan. The team, with members from Osaka Prefecture University, has described the influence of interpenetration of PCPs on the structural flexibility and gas sorption behavior of these materials1, which show great potential for use in gas storage, heterogeneous catalysis and as separation materials.

The interpenetrated molecular frameworks of PCPs are composed of metal ions and bridging organic ligands. Materials scientists initially thought that interpenetration would reduce the available capacity of the voids within the structure. However, other researchers showed recently that such entangled structures exhibit high gas-uptake, as a result of increased internal surface area. Interpenetration also increases the thermal stability of flexible frameworks.

These findings prompted Matsuda, Kitagawa and colleagues to make PCPs with the same chemical components but with either two-fold or three-fold interpenetration. Both forms of the 3D frameworks were made using a solvent templating method and were composed of zinc atoms and carboxylate- and pyridyl-based organic ligands. The two forms allowed the researchers to test the correlation between various physical properties and the degree of entanglement of the polymers.

Crystal structure analyses of the two forms indicated that non-covalent interactions, namely ð–ð interactions, in the three-fold structure are more significant than in the two-fold structure. Consequently, the two-fold structure has a more flexible structure and is of lower thermal stability than the more rigid three-fold PCP.

Using coincident x-ray powder diffraction and adsorption measurements, the team also showed that the two forms of structures have completely different carbon dioxide (CO2) adsorption behavior. The two-fold structure can adsorb four times the amount of saturated CO2 than the three-fold structure, owing to its greater flexibility and dynamic capability. Sorption occurs as a stepwise progression as a result of crystallographic transformations triggered by the addition and removal of guest molecules.

“The next challenge is the control of adsorption properties by external stimuli such as light or magnetic field to realize on-demand gas separation and storage,” says Matsuda. “This kind of material could be used to separate CO2 which is discharged from steelworks or to remove CO2 and hence keep air fresh in a spaceship.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center

Journal information

1. Bureekaew, S., Sato, H., Matsuda, R., Kubota, Y., Hirose, R., Kim, J., Kato, K., Takata, M. & Kitagawa, S. Control of interpenetration for tuning structural flexibility influences sorption properties. Angewandte Chemie International Edition published online 2 July 2010 (doi: 10.1002/anie.201002259).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6390
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>