Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering at the Atomic Scale

31.07.2013
Wake Forest researchers are part of a national effort to design a super filter to clean up carbon dioxide emissions

Could a substance that resembles baby powder curb global carbon emissions?

Wake Forest University researchers believe so, and a new Department of Energy (DOE) grant worth more than $1 million will enable them and collaborators at the University of Texas at Dallas to design a novel material that could help revolutionize green engineering.

Discovered less than a decade ago, a Metal Organic Framework (MOF) is a material scientists can engineer down to the molecular and atomic scale.

A microscopic view shows how each powdery crystal contains millions of metal ions joined together with organic bonds to form highly porous, three-dimensional structures.

Because they are inexpensive and can easily be grown overnight, MOFs hold enormous potential for a new generation of clean engineering, from super-efficient CO2 filters to helping make hydrogen powered vehicles a reality.

“The advantages of this stuff are mind blowing,” said Prof. Timo Thonhauser, a physicist at Wake Forest University. “Gas molecules such as methane and carbon dioxide easily diffuse into MOFs, which can store them in high quantities and with unprecedented selectivity.”

For example, a fuel tank filled with MOF crystals can store twice as much natural gas as its conventional counterpart, enabling a car to go twice as far on a single tank. Ecofuel World Tour driver Rainer Zietlow proved this by driving a Volkswagen automobile with a MOF tank more than 45,000 miles to test the utility of the technology.

A sponge-like gatekeeper

MOFs can be designed to attract and store specific molecules while letting others pass through their porous, grid-like structure. Thonhauser’s group is collaborating with scientists at the UT Dallas and Rutgers University to harness this capability by designing super-efficient filters to trap carbon dioxide emitted by industrial plants.

To date, trapping individual carbon dioxide atoms from car engines or coal plants has been difficult because the molecules are so small. “If the pores in a filter are too big everything is going to go through,” Thonhauser said. “Conventional filters are too coarse to catch most of this stuff. So we need to develop something that can selectively filter out specific, small atoms.”

Thonhauser explains that one challenge with current MOF filters is that while they can trap carbon dioxide emitted when burning a fossil fuel like coal they also hold on to water molecules. “Once the water builds up, the filter won’t hold on to CO2 anymore,” he said.

This is where Brian Shoemaker, an undergraduate research fellow in Thonhauser’s lab, comes in. He is swapping different metals like magnesium, iron, gold and platinum into a computer simulation to see which types of metals work best in a MOF carbon dioxide filter.

“What you really want is a filter on a molecular level that picks up one guy among hundreds of others,” Shoemaker, a rising senior, said. “This is a really exciting project to work on because it is something that really hasn’t been done to date.”

Parting the sea

Shoemaker is also helping Thonhauser with another piece of MOF-based research that could help make the world a much cleaner place.

“In the future, we envision cars that run on hydrogen instead of gas,” Thonhauser said. “One of the big questions that remains in this line of research is where do I get the hydrogen?”

Our preliminary studies suggest the possibility of MOF materials being used to split water – one of the world’s most abundant natural resources – into its separate components, hydrogen and oxygen.

Thonhauser explains that currently water can be split with various techniques, but those are all not very efficient.

“It is not clear by any means, but there is a possibility that MOFs might be able to split water effectively someday,” Thonhauser said. “Brian is testing different metals to see if we can find one that will bind oxygen while letting the hydrogen pass through. If that were the case, it would be mind-boggling. It is a long shot, but you just don’t know.”

Will Ferguson | Newswise
Further information:
http://www.wfu.edu

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>