Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineering at the Atomic Scale

Wake Forest researchers are part of a national effort to design a super filter to clean up carbon dioxide emissions

Could a substance that resembles baby powder curb global carbon emissions?

Wake Forest University researchers believe so, and a new Department of Energy (DOE) grant worth more than $1 million will enable them and collaborators at the University of Texas at Dallas to design a novel material that could help revolutionize green engineering.

Discovered less than a decade ago, a Metal Organic Framework (MOF) is a material scientists can engineer down to the molecular and atomic scale.

A microscopic view shows how each powdery crystal contains millions of metal ions joined together with organic bonds to form highly porous, three-dimensional structures.

Because they are inexpensive and can easily be grown overnight, MOFs hold enormous potential for a new generation of clean engineering, from super-efficient CO2 filters to helping make hydrogen powered vehicles a reality.

“The advantages of this stuff are mind blowing,” said Prof. Timo Thonhauser, a physicist at Wake Forest University. “Gas molecules such as methane and carbon dioxide easily diffuse into MOFs, which can store them in high quantities and with unprecedented selectivity.”

For example, a fuel tank filled with MOF crystals can store twice as much natural gas as its conventional counterpart, enabling a car to go twice as far on a single tank. Ecofuel World Tour driver Rainer Zietlow proved this by driving a Volkswagen automobile with a MOF tank more than 45,000 miles to test the utility of the technology.

A sponge-like gatekeeper

MOFs can be designed to attract and store specific molecules while letting others pass through their porous, grid-like structure. Thonhauser’s group is collaborating with scientists at the UT Dallas and Rutgers University to harness this capability by designing super-efficient filters to trap carbon dioxide emitted by industrial plants.

To date, trapping individual carbon dioxide atoms from car engines or coal plants has been difficult because the molecules are so small. “If the pores in a filter are too big everything is going to go through,” Thonhauser said. “Conventional filters are too coarse to catch most of this stuff. So we need to develop something that can selectively filter out specific, small atoms.”

Thonhauser explains that one challenge with current MOF filters is that while they can trap carbon dioxide emitted when burning a fossil fuel like coal they also hold on to water molecules. “Once the water builds up, the filter won’t hold on to CO2 anymore,” he said.

This is where Brian Shoemaker, an undergraduate research fellow in Thonhauser’s lab, comes in. He is swapping different metals like magnesium, iron, gold and platinum into a computer simulation to see which types of metals work best in a MOF carbon dioxide filter.

“What you really want is a filter on a molecular level that picks up one guy among hundreds of others,” Shoemaker, a rising senior, said. “This is a really exciting project to work on because it is something that really hasn’t been done to date.”

Parting the sea

Shoemaker is also helping Thonhauser with another piece of MOF-based research that could help make the world a much cleaner place.

“In the future, we envision cars that run on hydrogen instead of gas,” Thonhauser said. “One of the big questions that remains in this line of research is where do I get the hydrogen?”

Our preliminary studies suggest the possibility of MOF materials being used to split water – one of the world’s most abundant natural resources – into its separate components, hydrogen and oxygen.

Thonhauser explains that currently water can be split with various techniques, but those are all not very efficient.

“It is not clear by any means, but there is a possibility that MOFs might be able to split water effectively someday,” Thonhauser said. “Brian is testing different metals to see if we can find one that will bind oxygen while letting the hydrogen pass through. If that were the case, it would be mind-boggling. It is a long shot, but you just don’t know.”

Will Ferguson | Newswise
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>