Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering a better hip implant

19.09.2012
UI team learns thigh size is a reason why hip implants fail
University of Iowa researchers have determined that thigh size in obese people is a reason their hip implants are more likely to fail.

In a study, the team simulated hip dislocations as they occur in humans and determined that increased thigh girth creates hip instability in morbidly obese patients (those with a body mass index (BMI) greater than 40). The researchers propose that surgeons modify surgical procedures to minimize the chance of dislocation in obese patients and consider other designs for hip replacement implants.

“We have shown that morbidly obese patients’ thighs are so large that they are actually pushing each other outward and forcing the implant out of its socket,” says Jacob Elkins, a UI graduate student and first author of the paper published in the journal Clinical Orthopaedics and Related Research. “Studies have shown up to a 6.9-fold higher dislocation rate for morbidly obese patients compared to normal weight patients.
Total hip replacement gives mobility back to people who experience debilitating hip joint pain. According to the National Institute of Arthritis and Musculoskeletal and Skin Disease (NIAMS), 231,000 total hip replacements are performed annually in the U.S. and more than 90 percent of these do not require follow-up repair or replacement. But when an implant fails, it is painful, and costly. Studies have shown that dislocation ranks as the most common reason for failed implants, according to Medicare hospital discharge data.

A hip implant is a ball-in-socket mechanism, designed to simulate a human hip joint. However, it lacks the connective tissue that stabilizes a normal hip joint, meaning the ball portion of the implant can sometimes “pop out.”

Clinical studies point to an increased dislocation risk among obese patients with total hip replacements, but the reasons have remained unclear. Dislocation requires extreme range of motion, such as flexing at the waist. Given the reduced range of motion in the obese, why do they experience more dislocations?

Engineering a better hip implant

Using a computational model he created to understand how a hip implant works in patients, Elkins and research collaborators analyzed 146 healthy adults and six cadaver pelvises. They examined the effects of thigh-on-thigh pressure on the hip implant during a wide range of movements from sitting to standing. With the ability to simulate movements in human bodies of varying sizes, the team could test different implants. They also looked at the various implants’ performances in different body types. They used a hip-center-to-hip-center distance of 200 millimeters as a basis for their analyses of thigh girth for eight different BMIs, ranging from 20 to 55.

The research team ran computations to examine the joint stability of several different hip implants. They tested two femoral head sizes (28 and 36 millimeters), normal versus high-offset femoral neck, and multiple cup abduction angles.

The researchers report three main findings: 1) thigh soft tissue impingement increased the risk of dislocation for BMIs of 40 or greater; 2) implants with a larger femoral head diameter did not substantially improve joint stability; 3) using an implant with a high-offset femoral stem decreased the dislocation risk.

“The larger your legs are, the more force that goes through the hip joint,” Elkins says. “It’s a simple concept. When your thighs are real big, they push on the hips.”

Recommendations for surgeons

Surgeons treating obese hip implant patients can use the study findings to select better implant designs and modify their surgical procedures to minimize the chance of dislocation in obese patients, the researchers say.

“The number one thing surgeons can do is what is called a ‘high offset femoral stem,’” says senior author Thomas Brown, UI professor of orthopaedic surgery, referring to the portion of the implant that attaches to the patient’s upper thigh bone, or femur. “Basically, the implant’s femoral stem is longer, so it effectively shifts the leg further away from the center rotation of the joint. The thighs then would need to move even further inward before they would abut one another and generate the forces necessary for dislocation.”

The study, titled “Morbid obesity may increase dislocation in total hip patients: A biomechanical analysis,” was published online on Aug. 21. Elkins is in the UI’s College of Engineering Biomechanical Engineering Program and the Carver College of Medicine’s Medical Scientist Training Program.

Other authors are Matej Daniel, assistant professor at Czech Technical University in Prague, Czech Republic, and former Fulbright Research Scholar at UI Hospitals and Clinics; Douglas Pedersen, UI research associate professor of orthopaedic surgery; Bhupinder Singh, UI doctoral candidate in physical therapy; John Yack, UI associate professor of physical therapy; and John Callaghan, UI professor of orthopaedic surgery.

The National Institutes of Health, the Veterans Administration, and the National Center for Resource Resources funded the research.
Contacts
Jacob Elkins, Orthopaedics and Rehabilitation, 319-594-4800
John Riehl, Graduate College, 319-384-1309

Richard Lewis | EurekAlert!
Further information:
http://www.uiowa.edu
http://now.uiowa.edu/2012/09/engineering-better-hip-implant

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>