Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Engineered Directional Nanofilm Mimics Nature’s Curious Feats

25.10.2010
In nature, textured surfaces provide some plants the ability to trap insects and pollen, certain insects the ability to walk on water, and the gecko the ability to climb walls.

Being able to mimic these features at a larger scale would spur new advances in renewable energy and medicine. In a paper published in the October 10 issue of Nature Materials, a team of researchers from Penn State, the Naval Research Laboratory, and Harvard Medical School report on the development of an engineered thin film that mimics the natural abilities of water striding insects to walk on the surface of water, and for butterflies to shed water from their wings.

Although superhydrophobic self-cleaning surfaces are an active area of research, this development marks an engineering breakthrough in the ability to control the directionality of liquid transport. Using an array of poly(p-xylylene) nanorods synthesized by a bottom-up vapor-phase technique, the researchers were able to pin water droplets in one direction with enormous adhesive forces proportional to the number of nanorods and the surface tension, while releasing droplets in the opposite direction.

The differential between the pin and release force is 80 micronewtons, over ten times the values reported in other engineered surfaces with ratchet-like features, and the first such surface to be engineered at the nanoscale. Recently, the authors also demonstrated directional adhesion and friction of these surfaces, similar to the way a gecko can climb a wall (J. Applied Physics, 2010). Gecko’s feet contain approximately 4 million hairs per square millimeter, whereas polymer nanorods can be deposited at 40 million rods per square millimeter.

The nanofilm produced by this technique, called oblique angle deposition, provides a microscale smooth surface for the transport of small water droplets without pumps or optical waves and with minimal deformation for self-powered microfluidic devices for medicine and for microassembly.

In work sponsored by the U.S. Navy, the nanofilm is envisioned for use as a coating that would reduce drag on the hull of vessels and retard fouling. Potential industrial and energy related uses are as directional syringes and fluid diodes, pump-free digital fluidic devices, increased efficiency of thermal cooling for microchips, coatings for tires, and even in energy production from rain drops.

The lead on the Penn State team, Melik Demirel, associate professor of engineering science and mechanics and corresponding author on the report, believes that the current laboratory based vapor phase technique, which although relatively simple still requires a vacuum, can be replaced by a liquid phase technique, which would allow for scaling the production of their material to industry size. “The major impact of our method is that for the first time we can create a controlled directional surface at the nanoscale,” Demirel concludes.

Funding for the Penn State research comes from the Office of Naval Research through a Young Investigators Grant to Demirel. Other authors include Niranjan Malvadkar, former Ph.D. student in Demirel’s lab and now a scientist at Dow Chemical R&D, and Koray Sekeroglu, a current Ph.D. student in Demirel’s lab, Matthew Hancock from Brigham and Women’s Hospital, Harvard Medical School, and Walter Dressick from the Naval Research Laboratory. The paper, “An engineered anisotropic nanofilm with unidirectional wetting properties,” is available at http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2864.html.

Contact Prof. Melik C. Demirel, Ph.D., at mdemirel@engr.psu.edu or 814-863-2270.

Prof. Melik C. Demirel | Newswise Science News
Further information:
http://www.psu.edu

Further reports about: Demirel Laboratory Medical Wellness Melik Mimics Nanofilm Naval microfluidic device water droplets

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>