Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Engineered Directional Nanofilm Mimics Nature’s Curious Feats

25.10.2010
In nature, textured surfaces provide some plants the ability to trap insects and pollen, certain insects the ability to walk on water, and the gecko the ability to climb walls.

Being able to mimic these features at a larger scale would spur new advances in renewable energy and medicine. In a paper published in the October 10 issue of Nature Materials, a team of researchers from Penn State, the Naval Research Laboratory, and Harvard Medical School report on the development of an engineered thin film that mimics the natural abilities of water striding insects to walk on the surface of water, and for butterflies to shed water from their wings.

Although superhydrophobic self-cleaning surfaces are an active area of research, this development marks an engineering breakthrough in the ability to control the directionality of liquid transport. Using an array of poly(p-xylylene) nanorods synthesized by a bottom-up vapor-phase technique, the researchers were able to pin water droplets in one direction with enormous adhesive forces proportional to the number of nanorods and the surface tension, while releasing droplets in the opposite direction.

The differential between the pin and release force is 80 micronewtons, over ten times the values reported in other engineered surfaces with ratchet-like features, and the first such surface to be engineered at the nanoscale. Recently, the authors also demonstrated directional adhesion and friction of these surfaces, similar to the way a gecko can climb a wall (J. Applied Physics, 2010). Gecko’s feet contain approximately 4 million hairs per square millimeter, whereas polymer nanorods can be deposited at 40 million rods per square millimeter.

The nanofilm produced by this technique, called oblique angle deposition, provides a microscale smooth surface for the transport of small water droplets without pumps or optical waves and with minimal deformation for self-powered microfluidic devices for medicine and for microassembly.

In work sponsored by the U.S. Navy, the nanofilm is envisioned for use as a coating that would reduce drag on the hull of vessels and retard fouling. Potential industrial and energy related uses are as directional syringes and fluid diodes, pump-free digital fluidic devices, increased efficiency of thermal cooling for microchips, coatings for tires, and even in energy production from rain drops.

The lead on the Penn State team, Melik Demirel, associate professor of engineering science and mechanics and corresponding author on the report, believes that the current laboratory based vapor phase technique, which although relatively simple still requires a vacuum, can be replaced by a liquid phase technique, which would allow for scaling the production of their material to industry size. “The major impact of our method is that for the first time we can create a controlled directional surface at the nanoscale,” Demirel concludes.

Funding for the Penn State research comes from the Office of Naval Research through a Young Investigators Grant to Demirel. Other authors include Niranjan Malvadkar, former Ph.D. student in Demirel’s lab and now a scientist at Dow Chemical R&D, and Koray Sekeroglu, a current Ph.D. student in Demirel’s lab, Matthew Hancock from Brigham and Women’s Hospital, Harvard Medical School, and Walter Dressick from the Naval Research Laboratory. The paper, “An engineered anisotropic nanofilm with unidirectional wetting properties,” is available at http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2864.html.

Contact Prof. Melik C. Demirel, Ph.D., at mdemirel@engr.psu.edu or 814-863-2270.

Prof. Melik C. Demirel | Newswise Science News
Further information:
http://www.psu.edu

Further reports about: Demirel Laboratory Medical Wellness Melik Mimics Nanofilm Naval microfluidic device water droplets

More articles from Materials Sciences:

nachricht Magnesium magnificent for plasmonic applications
23.05.2018 | Rice University

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>