Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engine mounts made from dandelions


At the International Motor Show IAA in Frankfurt, ContiTech presents promising research results for mounting elements based on the so-called »Taraxagum«, a natural rubber extracted from dandelions. Together with Continental and since 2013, scientists of the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Biology and Biotechnology of Plants (IBBP) at the University of Münster have been exploring how dandelions could be used in a sustainable way as an alternative source of rubber for the rubber processing industry. In the context of this project, Continental Reifen GmbH has already successfully tested car tire prototypes.

ContiTech Vibration Control developers are now testing if natural rubber made from dandelions might also be used to reduce engine vibrations. At the IAA ContiTech presents first and promising research findings for a possible application in mounting elements in vehicles. The natural rubber is supposed to adapt the elements to different applications in gearbox and enginge mounts and at the same time make the parts durable.

ContiTech engine mount Taraxagum


They bear static loads, insulate the structure-borne sound, limit the movement of the engine, and prevent it from tearing off in the event of an accident. They also damp vibrations and impacts that come from the roads.

»The demands on engine mounts are completely different to those on tires. For example, we have to cope with heavy dynamic loads at high temperatures. This means that the focus of our developments is different to that of our tire colleagues,« says Dr. Anna Misiun, who leads the research activities of the project at ContiTech. Regardless of the different products for which dandelion rubber might be used, it always implies considerable environmental benefits.

Better CO2 balance of the raw material,
greater independence from market fluctuations

Professor Dirk Prüfer and Dr. Christian Schulze Gronover of the Fraunhofer IME and the IBBP: »The plant is extremely resilient, able to grow in moderate climates and even in soil that is not suited for the cultivation of food and feed crops. Thus, there is no need for transportation from tropical countries. This improves the CO2 balance of the raw material considerably.« Moreover, the greater independence from traditional raw materials with sometimes highly fluctuating market prices also offers advantages for the industry.

The development of an environmentally and resource friendly production process for natural rubber on an industrial scale is the overarching objective of the collaboration of the scientists from Continental and Fraunhofer IME. This objective has already come a lot closer with the development of a laboratory-scale pilot plant for the extraction of natural rubber from the roots of the Russian dandelion – and with the production of corresponding tire prototypes.

In tests under summer and winter conditions, those tires performed just as well as tires made with rubber tree caoutchouc. For their achievements, the scientists involved were awarded with a Joseph-von-Fraunhofer Prize 2015th. Now, the production is to be scaled up so that it finally works for industrial use, measured in tons. With that, in rubber production, the «blowball« develops to an ecologically and economically very attractive alternative to the tropical rubber tree.

However, it will still take several years until industrial production can start. »First, the homework has to be done: The plant needs to be further optimized. For the highest possible rubber yield, for sowing, planting and rubber extraction on a large scale,« say the two scientists.

Weitere Informationen:

Sabine Dzuck | Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>