Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Energy storage solution combines polymers and nanosheets


A new, lightweight composite material for energy storage in flexible electronics, electric vehicles and aerospace applications has been experimentally shown to store energy at operating temperatures well above current commercial polymers, according to a team of Penn State scientists. This polymer-based, ultrathin material can be produced using techniques already used in industry.

"This is part of a series of work we have done in our lab on high-temperature dielectrics for use in capacitors," said Qing Wang, professor of materials science and engineering, Penn State. "Prior to this work we had developed a composite of boron nitride nanosheets and dielectric polymers, but realized there were significant problems with scaling that material up economically."

PEI coated with hexagonal boron nitride (hBN) nanosheets significantly outperforms competitive polymers at operating temperatures needed for electric vehicles and aerospace power applications.

Credit: Feihua Liu/ Penn State

Scalability -- or making advanced materials in commercially relevant amounts for devices -- has been the defining challenge for many of the new, two-dimensional materials being developed in academic labs.

"From a soft materials perspective, 2D materials are fascinating, but how to mass produce them is a question," Wang said. "Plus, being able to combine them with polymeric materials is a key feature for future flexible electronics applications and electronic devices."

To solve this problem, Wang's lab collaborated with a group at Penn State working in two-dimensional crystals.

"This work was conceived in conversations between my graduate student, Amin Azizi, and Dr. Wang's graduate student, Matthew Gadinski," said Nasim Alem, assistant professor of materials science and engineering and a faculty member in Penn State's Center for 2-Dimensional and Layered Materials. "This is the first robust experiment in which a soft polymeric material and a hard 2D crystalline material have come together to create a functional dielectric device."

Azizi, now a post-doctoral fellow at University of California -- Berkeley, and Gadinski, now a senior engineer at DOW Chemical, developed a technique using chemical vapor deposition to make multilayer, hexagonal boron-nitride nanocrystal films and transfer the films to both sides of a polyetherimide (PEI) film. They next bonded the films together using pressure into a three-layer sandwich structure. In a result that was surprising to the researchers, pressure alone, without any chemical bonding, was enough to make a free-standing film strong enough to potentially be manufactured in a high-throughput roll-to-roll process.

The results were reported in a recent issue of the journal Advanced Materials in a paper titled "High-performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials."

Hexagonal boron nitride is a wide band-gap material with high mechanical strength. Its wide band gap makes it a good insulator and protects the PEI film from dielectric breakdown at high temperatures, the reason for failure in other polymer capacitors. At operating temperatures above 176 degrees Fahrenheit, the current best commercial polymers start to lose efficiency, but hexagonal-boron-nitride-coated PEI can operate at high efficiency at over 392 degrees Fahrenheit. Even at high temperatures, the coated PEI remained stable for over 55,000 charge-discharge cycles in testing.

"Theoretically, all these high-performance polymers that are so commercially valuable can be coated with boron nanosheets to block charge injection," Wang said. "I think this will make this technology feasible for future commercialization."

Alem added, "There are many devices made with 2D crystals at the laboratory scale, but defects make them a problem for manufacturing. With a large band-gap material like boron nitride, it does a good job despite small microstructural features that might not be ideal."

First-principles calculations determined that the electron barrier, established at the interface of the PEI/hexagonal boron-nitride structure and the metal electrodes applied to the structure to deliver, current is significantly higher than typical metal electrode-dielectric polymer contacts, making it more difficult for charges from the electrode to be injected into the film. This work was done by the theoretical research group of Long-Qing Chen, Donald W. Hamer Professor of Materials Science and Engineering, professor of engineering science and mechanics, and mathematics, Penn State.


Others contributing to this work include post-doctoral scholar Qi Li and graduate student Feihua Liu in Wang's lab; undergraduate Mohammed Abu AlSaud in Alem's lab; senior scientist Jianjun Wang, post-doctoral scholar Yi Wang, and graduate student Bo Wang, all in the Chen group.

The U.S. Office of Naval Research and the National Science Foundation supported this work.

Media Contact

A'ndrea Elyse Messer


A'ndrea Elyse Messer | EurekAlert!

More articles from Materials Sciences:

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Keeping a tight hold on things: Robot-mounted vacuum grippers flex their artificial muscles
23.03.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>