Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive spintronics success could lead to single chip for processing and memory

09.12.2010
Researchers from Queen Mary, University of London (UK) and the University of Fribourg (Switzerland) have shown that a magnetically polarised current can be manipulated by electric fields.

Published this week in the journal Nature Materials, this important discovery opens up the prospect of simultaneously processing and storing data on electrons held in the molecular structure of computer chips - combining computer memory and processing power on the same chip.

"This is especially exciting, as this discovery has been made with flexible organic semiconductors, which are set to be the new generation of displays for mobile devices, TVs and computer monitors, and could offer a step-change in power efficiency and reduced weight of these devices," said Dr Alan Drew, from Queen Mary's School of Physics, who led the research.

'Spintronics' - spin transport electronics - has rapidly become the universally used technology for computer hard disks. Designed in thin layers of magnetic and non-magnetic materials, Giant Magnetoresistive (GMR) spin valves use the magnetic properties, or 'spin', of electrons to detect computer data stored in magnetic bits. In contrast, computer processing relies on streams of electrically charged electrons flowing around a tiny circuit etched into a microchip.

Dr Drew and his team have investigated how layers of Lithium Fluoride (LiF) - a material that has an intrinsic electric field - can modify the spin of electrons transported through these spin valves. He explains: "While in theory, devices that combine electron charge and spin are conceptually straightforward, this is the first time anybody has shown it is possible to proactively control spin with electric fields."

Professor Christian Bernhard, from the University of Fribourg Physics Department, describes their successful technique: "Using the direct spectroscopic technique Low Energy Muon Spin Rotation (LE-ìSR), our experiments have visualised the extracted spin polarisation close to buried interfaces of a spin valve."

The experiments were performed at the Paul Scherrer Institute, the only institution worldwide; where this technique is available. The method employs the magnetic properties of muons - unstable subatomic particles. "In such an experiment the muons are shot into the material and when they decay, the decay products carry information about the magnetic processes inside the material," explains Professor Elvezio Morenzoni from PSI, where the technique has been developed. "The unique thing about low energy muons is that they can be placed specifically in a particular layer of a multi-layer system. Thus using this method one can study the magnetism in any single layer separately."

The paper "Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer" is authored by L. Schulz, L. Nuccio, M.Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni,W. P. Gillin and A. J. Drew.

For media information, contact:

Communications Office
Queen Mary, University of London
email: press@qmul.ac.uk

James Lush | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>