Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elusive spintronics success could lead to single chip for processing and memory

09.12.2010
Researchers from Queen Mary, University of London (UK) and the University of Fribourg (Switzerland) have shown that a magnetically polarised current can be manipulated by electric fields.

Published this week in the journal Nature Materials, this important discovery opens up the prospect of simultaneously processing and storing data on electrons held in the molecular structure of computer chips - combining computer memory and processing power on the same chip.

"This is especially exciting, as this discovery has been made with flexible organic semiconductors, which are set to be the new generation of displays for mobile devices, TVs and computer monitors, and could offer a step-change in power efficiency and reduced weight of these devices," said Dr Alan Drew, from Queen Mary's School of Physics, who led the research.

'Spintronics' - spin transport electronics - has rapidly become the universally used technology for computer hard disks. Designed in thin layers of magnetic and non-magnetic materials, Giant Magnetoresistive (GMR) spin valves use the magnetic properties, or 'spin', of electrons to detect computer data stored in magnetic bits. In contrast, computer processing relies on streams of electrically charged electrons flowing around a tiny circuit etched into a microchip.

Dr Drew and his team have investigated how layers of Lithium Fluoride (LiF) - a material that has an intrinsic electric field - can modify the spin of electrons transported through these spin valves. He explains: "While in theory, devices that combine electron charge and spin are conceptually straightforward, this is the first time anybody has shown it is possible to proactively control spin with electric fields."

Professor Christian Bernhard, from the University of Fribourg Physics Department, describes their successful technique: "Using the direct spectroscopic technique Low Energy Muon Spin Rotation (LE-ìSR), our experiments have visualised the extracted spin polarisation close to buried interfaces of a spin valve."

The experiments were performed at the Paul Scherrer Institute, the only institution worldwide; where this technique is available. The method employs the magnetic properties of muons - unstable subatomic particles. "In such an experiment the muons are shot into the material and when they decay, the decay products carry information about the magnetic processes inside the material," explains Professor Elvezio Morenzoni from PSI, where the technique has been developed. "The unique thing about low energy muons is that they can be placed specifically in a particular layer of a multi-layer system. Thus using this method one can study the magnetism in any single layer separately."

The paper "Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer" is authored by L. Schulz, L. Nuccio, M.Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni,W. P. Gillin and A. J. Drew.

For media information, contact:

Communications Office
Queen Mary, University of London
email: press@qmul.ac.uk

James Lush | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>