Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electronic circuits printed at 1 micron resolution


Prints Made on Flexible Substrates. Technique May Be Applicable to the Development of Wearable Devices.

A research team consisting of a group from National Institute for Materials Science (NIMS) International Center for Materials Nanoarchitectonics (MANA) and Colloidal Ink developed a printing technique for forming electronic circuits and thin-film transistors (TFTs) with line width and line spacing both being 1 μm. This study was supported by a Grant for Advanced Industrial Technology Development from NEDO.

Figure: Formation of microcircuit lines using a selective coating technique. (a) Schematic of selective coating technique. Only a hydrophilic region created through irradiation of parallel vacuum ultraviolet (PVUV) is coated with metal ink. (b) Electronic circuit with a line width of 5 μm formed through selective coating. (c) Electrode lines with different widths. Lines as narrow as 1 μm can be formed.

Copyright : NIMS

A research team consisting of MANA Independent Scientist Takeo Minari, MANA NIMS, and Colloidal Ink developed a printing technique for forming electronic circuits and thin-film transistors (TFTs) with line width and line spacing both being 1 μm.

This study was supported by a Grant for Advanced Industrial Technology Development, provided by the New Energy and Industrial Technology Development Organization (NEDO). Using this technique, the research team formed fully-printed organic TFTs with a channel length of 1 μm on flexible substrates, and confirmed that the TFTs operate at a practical level.

Printed electronics—printing techniques to fabricate electronic devices using functional materials dissolved in ink—is drawing much attention in recent years as a promising new method to create large-area semiconductor devices at low cost. Because these techniques enable the formation of electronic devices even on flexible substrates, they are expected to be applicable to new fields such as wearable devices.

In comparison, conventional printing technologies allow the formation of circuits and devices with line widths only as narrow as several dozen micrometers. Accordingly, they are not applicable to the creation of minute devices suitable for practical use. Thus, there were high expectations for developing new printing techniques capable of consistently fabricating circuits with line widths of several micrometers or less.

In this study, the research team developed a printing technique capable of forming metal circuits with line width being 1 μm on flexible substrates. Using this technique, they fabricated minute organic TFTs. The principle of this printing technique is as follows: First, form hydrophilic and hydrophobic micro-patterns on the substrate by irradiating it with parallel vacuum ultraviolet (PVUV) at a wavelength of 200 nm or less. Then, coat only the hydrophilic patterns with metal nanoparticle inks. The use of a PVUV light source (Ushio Inc.) enabled us to focus emitted light on much smaller targets than conventional light sources. Moreover, the use of DryCure-Au—metal nanoparticle ink that can form a conductive film at room temperature developed by Colloidal Ink—enabled us to form devices and circuits at room temperature during the entire process. As a result, we are able to fully prevent distortion of flexible substrates by heat, and form and laminate circuits within the accuracy of several microns. In addition, we precisely tuned the gate overlap lengths of the printed organic TFTs fabricated by this technique, which was previously impossible due to accuracy issues. As a result, a practical mobility level of 0.3 cm2 V-1 s-1 was accomplished for the organic TFTs with the channel length of 1 μm.

In future studies, we will aim to apply the technique in various fields such as large-area flexible displays and sensors. Since the process we developed is applicable to bio-related materials, the technique may also be useful in medical and bioelectronics fields.

This study was published in the online version of Advanced Materials on May 17, 2016.

Mikiko Tanifuji | Research SEA

Further reports about: Materials Science NIMS electronic circuits electronic devices

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>