Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electrifying Research: Piezoelectric Effects for the Suppression of Material Stresses


The generation of electrical charges in response to mechanical deformation is a distinctive feature of piezoelectric materials. This property can be used to avoid mechanical stresses in special materials. A project currently funded by the Austrian Science Fund FWF will make a key contribution to the optimisation of these "intelligent materials".

High levels of mechanical stress reduce the lifespan of construction components. This is true for all types of materials; exposure to mechanical stress is a crucial factor in the duration of their lifespan. When stresses are combined with vibrations they have a particularly negative impact on durability.

Electric charge sparks new ideas in material science.

© Wikimedia Commons / Stefan.nettesheim

Intelligent materials that can actively counteract such effects have been available for special applications for some years now. The solution applied here involves a very sophisticated trick of physics: the so-called piezoelectric effect, that is the generation of an electrical charge through deformation, can be used to actively suppress these forces.

However, piezoelectric materials are also subject to forces which reduce their durability and finding a way of changing this is the challenge that scientist Jürgen Schöftner has set himself.


A particular characteristic of piezoelectric materials plays a key role in Schöftner's research: "A distinctive feature of piezoelectric materials is their special combination of physical properties. This is responsible for the fact that an increase of mechanical stress can arise even if the mechanical deformation of the material, which was caused by external forces, has already abated."

Such local increases in stress have a negative effect on the durability of the material and Schöftner aims to reduce them. As he explains, he is entering uncharted scientific territory here:

"The research carried out in recent years in this field, which is known as 'structural control', focused mainly on the reduction of vibrations and deformations. These methods are so far well understood. However, the findings on the avoidance of vibrations are of no help when it comes to the avoidance of mechanical stresses. New methods are needed here and we plan to develop the basis for them."

The first stage of Schöftner's project involves the analysis of the so-called constitutive relations for piezoelectric materials. This will enable the deduction of formulations for possible stress suppression in the three-dimensional space. He will then also calculate the basic differential equations for the stress. The aim of these basic calculations is to find workable concepts for the suppression of stresses in so-called lean components.


However, Schöftner is looking even further into the future in his project: "Piezoelectric materials can actually be used to harvest energy. The kinetic energy of a component is transformed into electrical oscillations and, therefore, neutralised. If the piezoelectric material is integrated into an electric network, the charge generated through the mechanical deformation can also be transmitted to a suitable electrical storage medium."

The long-term aim is to design an electrical network for a particular vibrating piezoelectric structure which, depending on requirements, regulates a mechanical stress under a certain level or transforms the vibrational energy into electrical energy through storage. This would require a smart circuit which consists of an active circuit for the stress regulation and a passive circuit for the energy harvesting.

Ideally, the mechanical stress would be regulated from a critical stress level – otherwise, vibrational energy would be converted into usable electrical energy. However, some basic homework will have to be done before such systems become a reality. Thus, in his project, Schöftner is working on the optimal distribution of the electrodes, the sheet resistance and the electrical network in such a system.

"The potential offered by such passively controlled materials is huge – however, before they can actually be used, we must obtain some basic information about the optimisation of these materials. This is precisely what we are doing in this FWF project," adds Schöftner.

Jürgen Schöftner has been a researcher at the Institute of Technical Mechanics at the Johannes Kepler University Linz since 2011. He is an expert in modelling and control of mechatronic problems.

Scientific Contact:
DI Dr. Jürgen Schöftner
Johannes Kepler University Linz
Institute of Technical Mechanics
Altenbergerstraße 69
4040 Linz, Austria
T +43 / 732 / 2468 - 6314

Austrian Science Fund FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111

Copy Editing & Distribution:
PR&D – Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44

Marc Seumenicht | PR&D - Public Relations für Forschung & Bildung
Further information:

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>