Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elastic Electronics: Stretchable Gold Conductor Grows Its Own Wires

19.07.2013
Networks of spherical nanoparticles embedded in elastic materials may make the best stretchy conductors yet, engineering researchers at the University of Michigan have discovered.

Flexible electronics have a wide variety of possibilities, from bendable displays and batteries to medical implants that move with the body.


Courtesy of Nicholas Kotov

LEFT: an electron microscope image of the gold nanoparticles in a relaxed sample of the layer-by-layer material. The nanoparticles are dispersed. RIGHT: a similar sample stretched to a little over twice its original length, at the same magnification. The nanoparticles form a distinct network

"Essentially the new nanoparticle materials behave as elastic metals," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. "It's just the start of a new family of materials that can be made from a large variety of nanoparticles for a wide range of applications."

Finding good conductors that still work when pulled to twice their length is a tall order — researchers have tried wires in tortuous zigzag or spring-like patterns, liquid metals, nanowire networks and more. The team was surprised that spherical gold nanoparticles embedded in polyurethane could outcompete the best of these in stretchability and concentration of electrons.

"We found that nanoparticles aligned into chain form when stretching. That can make excellent conducting pathways," said Yoonseob Kim, first author of the study to be published in Nature on July 18 and a graduate student in the Kotov lab in chemical engineering.

To find out what happened as the material stretched, the team took state-of-the-art electron microscope images of the materials at various tensions. The nanoparticles started out dispersed, but under strain, they could filter through the minuscule gaps in the polyurethane, connecting in chains as they would in a solution.

"As we stretch, they rearrange themselves to maintain the conductivity, and this is the reason why we got the amazing combination of stretchability and electrical conductivity," Kotov said.

The team made two versions of their material—by building it in alternating layers or filtering a liquid containing polyurethane and nanoparticle clumps to leave behind a mixed layer. Overall, the layer-by-layer material design is more conductive while the filtered method makes for extremely supple materials. Without stretching, the layer-by-layer material with five gold layers has a conductance of 11,000 Siemens per centimeter (S/cm), on par with mercury, while five layers of the filtered material came in at 1,800 S/cm, more akin to good plastic conductors.

The eerie, blood-vessel-like web of nanoparticles emerged in both materials upon stretching and disappeared when the materials relaxed. Even when close to its breaking point, at a little more than twice its original length, the layer-by-layer material still conducted at 2,400 S/cm. Pulled to an unprecedented 5.8 times its original length, the filtered material had an electrical conductance of 35 S/cm—enough for some devices.

Kotov and Kim chiefly see their stretchable conductors as electrodes. Brain implants are of particular interest to Kotov.

"They can alleviate a lot of diseases—for instance, severe depression, Alzheimer's disease and Parkinson's disease," he said. "They can also serve as a part of artificial limbs and other prosthetic devices controlled by the brain."

Rigid electrodes create scar tissue that prevents the electrode from working over time, but electrodes that move like brain tissue could avoid damaging cells, Kotov said.

"The stretchability is essential during implantation process and long-term operation of the implant when strain on the material can be particularly large," he said.

Whether in the brain, heart or other organs—or used for measurements on the skin—these electrodes could be as pliable as the surrounding tissue. They could also be used in displays that can roll up or in the joints of lifelike "soft" robots.

Because the chain-forming tendency of nanoparticles is so universal many other materials could stretch, such as semiconductors. In addition to serving as flexible transistors for computing, elastic semiconductors may extend the lives of lithium-ion batteries. Kotov's team is exploring various nanoparticle fillers for stretchable electronics, including less expensive metals and semiconductors.

Kotov is a professor of chemical engineering, biomedical engineering, materials science and engineering and macromolecular science and engineering.

The study is titled "Stretchable Nanoparticle Conductors with Self-Organized Conductive Pathways." The work is funded by the STX foundation in Seoul, South Korea; U.S. Department of Energy's Office of Science; Defense Advanced Research Projects Agency; Air Force Office of Scientific Research; and National Science Foundation. U-M is pursuing patent protection for the intellectual property and seeking commercialization partners to help bring the technology to market.

Watch and embed the video at www.youtube.com/watch?v=KQ7_TPSSfys.

Nicole Casal Moore | Newswise
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>