Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elastic Electronics: Stretchable Gold Conductor Grows Its Own Wires

19.07.2013
Networks of spherical nanoparticles embedded in elastic materials may make the best stretchy conductors yet, engineering researchers at the University of Michigan have discovered.

Flexible electronics have a wide variety of possibilities, from bendable displays and batteries to medical implants that move with the body.


Courtesy of Nicholas Kotov

LEFT: an electron microscope image of the gold nanoparticles in a relaxed sample of the layer-by-layer material. The nanoparticles are dispersed. RIGHT: a similar sample stretched to a little over twice its original length, at the same magnification. The nanoparticles form a distinct network

"Essentially the new nanoparticle materials behave as elastic metals," said Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering. "It's just the start of a new family of materials that can be made from a large variety of nanoparticles for a wide range of applications."

Finding good conductors that still work when pulled to twice their length is a tall order — researchers have tried wires in tortuous zigzag or spring-like patterns, liquid metals, nanowire networks and more. The team was surprised that spherical gold nanoparticles embedded in polyurethane could outcompete the best of these in stretchability and concentration of electrons.

"We found that nanoparticles aligned into chain form when stretching. That can make excellent conducting pathways," said Yoonseob Kim, first author of the study to be published in Nature on July 18 and a graduate student in the Kotov lab in chemical engineering.

To find out what happened as the material stretched, the team took state-of-the-art electron microscope images of the materials at various tensions. The nanoparticles started out dispersed, but under strain, they could filter through the minuscule gaps in the polyurethane, connecting in chains as they would in a solution.

"As we stretch, they rearrange themselves to maintain the conductivity, and this is the reason why we got the amazing combination of stretchability and electrical conductivity," Kotov said.

The team made two versions of their material—by building it in alternating layers or filtering a liquid containing polyurethane and nanoparticle clumps to leave behind a mixed layer. Overall, the layer-by-layer material design is more conductive while the filtered method makes for extremely supple materials. Without stretching, the layer-by-layer material with five gold layers has a conductance of 11,000 Siemens per centimeter (S/cm), on par with mercury, while five layers of the filtered material came in at 1,800 S/cm, more akin to good plastic conductors.

The eerie, blood-vessel-like web of nanoparticles emerged in both materials upon stretching and disappeared when the materials relaxed. Even when close to its breaking point, at a little more than twice its original length, the layer-by-layer material still conducted at 2,400 S/cm. Pulled to an unprecedented 5.8 times its original length, the filtered material had an electrical conductance of 35 S/cm—enough for some devices.

Kotov and Kim chiefly see their stretchable conductors as electrodes. Brain implants are of particular interest to Kotov.

"They can alleviate a lot of diseases—for instance, severe depression, Alzheimer's disease and Parkinson's disease," he said. "They can also serve as a part of artificial limbs and other prosthetic devices controlled by the brain."

Rigid electrodes create scar tissue that prevents the electrode from working over time, but electrodes that move like brain tissue could avoid damaging cells, Kotov said.

"The stretchability is essential during implantation process and long-term operation of the implant when strain on the material can be particularly large," he said.

Whether in the brain, heart or other organs—or used for measurements on the skin—these electrodes could be as pliable as the surrounding tissue. They could also be used in displays that can roll up or in the joints of lifelike "soft" robots.

Because the chain-forming tendency of nanoparticles is so universal many other materials could stretch, such as semiconductors. In addition to serving as flexible transistors for computing, elastic semiconductors may extend the lives of lithium-ion batteries. Kotov's team is exploring various nanoparticle fillers for stretchable electronics, including less expensive metals and semiconductors.

Kotov is a professor of chemical engineering, biomedical engineering, materials science and engineering and macromolecular science and engineering.

The study is titled "Stretchable Nanoparticle Conductors with Self-Organized Conductive Pathways." The work is funded by the STX foundation in Seoul, South Korea; U.S. Department of Energy's Office of Science; Defense Advanced Research Projects Agency; Air Force Office of Scientific Research; and National Science Foundation. U-M is pursuing patent protection for the intellectual property and seeking commercialization partners to help bring the technology to market.

Watch and embed the video at www.youtube.com/watch?v=KQ7_TPSSfys.

Nicole Casal Moore | Newswise
Further information:
http://www.umich.edu

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>