Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Infrared Heat for State-of-the-Art Composites

04.05.2011
Infrared emitters help to shorten process times

Aeroplanes and motor cars need to be lighter to save fuel but at the same time they need to convey their passengers in total safety. The blades of wind power turbines need to be light but also very strong. Infrared heat can help to meet these requirements.


Composites heating is tested in our in-house Applications Centre.


Infrared emitters help in the welding of glass fibre-reinforced pressure tanks.

Copyright Heraeus Noblelight 2011

Fibre-reinforced plastics are modern composite materials. They consist of plastics such as polyphenyl sulphide (PPS), polyether-ether-keton (PEEK) or epoxy resins (EP), in which carbon or glass fibres are embedded.

These fibres make the components strong and rigid and the plastic matrix can absorb energy. Many highly stressed components in the automotive sector, such as steering rods, which are subjected to high torsion forces, or elements for side impact protection are made from such composites.

Infrared systems are used in the manufacture of such modern components because they heat these materials rapidly and homogenously and so shorten the processes.

Composites are all different, depending on their eventual application. Short fibre duroplasts for large bodywork parts, long fibre thermoplastics for highly stressed structural components, woven rovings for wind vanes – all of these need to be made as cost-efficiently as possible.

In the manufacture of composite materials various heating processes are required, such as for the curing of duroplastic plastics. Thermoplastics are melted by heat before fusing or heated before forming or deformation. Fibre content or orientation have significant influence on thermal conductivity, so that homogenous heating of composite materials is not a simple matter.

Infrared Emitters Heat Rapidly and Homogenously.

To date, the necessary heating processes have been carried out with conventional warm air ovens. In contrast, infrared technology offers significant benefits.

Infrared emitters have very short response time, often within seconds, which makes heat controllable and helps to ensure that energy is used correctly. As the heat source needs to be switched on only when needed, this saves energy.

Infrared systems are relatively compact heating units, which can heat large components on a conveyor belt, without the need for a very large oven for the complete part.

Infrared radiation can be precisely matched to the product and process and modern numerical methods such as ray tracing and computational fluid dynamics can also help to heat large surfaces homogenously.

Composite Welding with Infrared Heat

A British company uses tanks of glass fibre-reinforced polypropylene for water treatment. The cylindrical water tank is made in two halves, which are then joined together by short-wave infrared radiation. The glass fibres ensure that the tanks are as robust as possible, as, in use, they have to withstand an internal pressure of around 10 bar. However, conventional plastic welding using contact heating is very difficult as the glass fibres in the plastic are exposed by melting the surfaces and can damage the hot contact plates.

In contrast, infrared emitters transfer heat in a contact-free manner and generate the heat directly in the material. As a result, the material cannot get caught in the heat source. In practice, a module with six, short wave infrared emitters heats the ends of the prepared cylinder halves. The module is then automatically retracted and the halves with the soft, heated ends are pressed together and welded.

Tests have demonstrated that this joint withstands very high pressures up to 28 bar without breaking. Also, because of the contact-free heating, there is no need for continuous cleaning of the heat source. The total process is very energy-efficient as the infrared emitter is switched on only when heat is needed.

Energy Efficiency By Exact Matching

Infrared heating technology offers many possibilities for optimising energy usage in industrial processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer by using the optimal wavelength
• Localised energy input by matching the heating to the shape
of the product to be heated
• Time focused energy input because of the rapid response times.
Infrared heat is always used when heating processes need to meet specific requirements in terms of place, time and quality.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

Heraeus
The precious metals and technology group headquartered in Hanau, Germany, is a global, family company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as over 12,300 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

For further information please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>