Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Infrared Heat for State-of-the-Art Composites

04.05.2011
Infrared emitters help to shorten process times

Aeroplanes and motor cars need to be lighter to save fuel but at the same time they need to convey their passengers in total safety. The blades of wind power turbines need to be light but also very strong. Infrared heat can help to meet these requirements.


Composites heating is tested in our in-house Applications Centre.


Infrared emitters help in the welding of glass fibre-reinforced pressure tanks.

Copyright Heraeus Noblelight 2011

Fibre-reinforced plastics are modern composite materials. They consist of plastics such as polyphenyl sulphide (PPS), polyether-ether-keton (PEEK) or epoxy resins (EP), in which carbon or glass fibres are embedded.

These fibres make the components strong and rigid and the plastic matrix can absorb energy. Many highly stressed components in the automotive sector, such as steering rods, which are subjected to high torsion forces, or elements for side impact protection are made from such composites.

Infrared systems are used in the manufacture of such modern components because they heat these materials rapidly and homogenously and so shorten the processes.

Composites are all different, depending on their eventual application. Short fibre duroplasts for large bodywork parts, long fibre thermoplastics for highly stressed structural components, woven rovings for wind vanes – all of these need to be made as cost-efficiently as possible.

In the manufacture of composite materials various heating processes are required, such as for the curing of duroplastic plastics. Thermoplastics are melted by heat before fusing or heated before forming or deformation. Fibre content or orientation have significant influence on thermal conductivity, so that homogenous heating of composite materials is not a simple matter.

Infrared Emitters Heat Rapidly and Homogenously.

To date, the necessary heating processes have been carried out with conventional warm air ovens. In contrast, infrared technology offers significant benefits.

Infrared emitters have very short response time, often within seconds, which makes heat controllable and helps to ensure that energy is used correctly. As the heat source needs to be switched on only when needed, this saves energy.

Infrared systems are relatively compact heating units, which can heat large components on a conveyor belt, without the need for a very large oven for the complete part.

Infrared radiation can be precisely matched to the product and process and modern numerical methods such as ray tracing and computational fluid dynamics can also help to heat large surfaces homogenously.

Composite Welding with Infrared Heat

A British company uses tanks of glass fibre-reinforced polypropylene for water treatment. The cylindrical water tank is made in two halves, which are then joined together by short-wave infrared radiation. The glass fibres ensure that the tanks are as robust as possible, as, in use, they have to withstand an internal pressure of around 10 bar. However, conventional plastic welding using contact heating is very difficult as the glass fibres in the plastic are exposed by melting the surfaces and can damage the hot contact plates.

In contrast, infrared emitters transfer heat in a contact-free manner and generate the heat directly in the material. As a result, the material cannot get caught in the heat source. In practice, a module with six, short wave infrared emitters heats the ends of the prepared cylinder halves. The module is then automatically retracted and the halves with the soft, heated ends are pressed together and welded.

Tests have demonstrated that this joint withstands very high pressures up to 28 bar without breaking. Also, because of the contact-free heating, there is no need for continuous cleaning of the heat source. The total process is very energy-efficient as the infrared emitter is switched on only when heat is needed.

Energy Efficiency By Exact Matching

Infrared heating technology offers many possibilities for optimising energy usage in industrial processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer by using the optimal wavelength
• Localised energy input by matching the heating to the shape
of the product to be heated
• Time focused energy input because of the rapid response times.
Infrared heat is always used when heating processes need to meet specific requirements in terms of place, time and quality.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

Heraeus
The precious metals and technology group headquartered in Hanau, Germany, is a global, family company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as over 12,300 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

For further information please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>