Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient Infrared Heat for State-of-the-Art Composites

04.05.2011
Infrared emitters help to shorten process times

Aeroplanes and motor cars need to be lighter to save fuel but at the same time they need to convey their passengers in total safety. The blades of wind power turbines need to be light but also very strong. Infrared heat can help to meet these requirements.


Composites heating is tested in our in-house Applications Centre.


Infrared emitters help in the welding of glass fibre-reinforced pressure tanks.

Copyright Heraeus Noblelight 2011

Fibre-reinforced plastics are modern composite materials. They consist of plastics such as polyphenyl sulphide (PPS), polyether-ether-keton (PEEK) or epoxy resins (EP), in which carbon or glass fibres are embedded.

These fibres make the components strong and rigid and the plastic matrix can absorb energy. Many highly stressed components in the automotive sector, such as steering rods, which are subjected to high torsion forces, or elements for side impact protection are made from such composites.

Infrared systems are used in the manufacture of such modern components because they heat these materials rapidly and homogenously and so shorten the processes.

Composites are all different, depending on their eventual application. Short fibre duroplasts for large bodywork parts, long fibre thermoplastics for highly stressed structural components, woven rovings for wind vanes – all of these need to be made as cost-efficiently as possible.

In the manufacture of composite materials various heating processes are required, such as for the curing of duroplastic plastics. Thermoplastics are melted by heat before fusing or heated before forming or deformation. Fibre content or orientation have significant influence on thermal conductivity, so that homogenous heating of composite materials is not a simple matter.

Infrared Emitters Heat Rapidly and Homogenously.

To date, the necessary heating processes have been carried out with conventional warm air ovens. In contrast, infrared technology offers significant benefits.

Infrared emitters have very short response time, often within seconds, which makes heat controllable and helps to ensure that energy is used correctly. As the heat source needs to be switched on only when needed, this saves energy.

Infrared systems are relatively compact heating units, which can heat large components on a conveyor belt, without the need for a very large oven for the complete part.

Infrared radiation can be precisely matched to the product and process and modern numerical methods such as ray tracing and computational fluid dynamics can also help to heat large surfaces homogenously.

Composite Welding with Infrared Heat

A British company uses tanks of glass fibre-reinforced polypropylene for water treatment. The cylindrical water tank is made in two halves, which are then joined together by short-wave infrared radiation. The glass fibres ensure that the tanks are as robust as possible, as, in use, they have to withstand an internal pressure of around 10 bar. However, conventional plastic welding using contact heating is very difficult as the glass fibres in the plastic are exposed by melting the surfaces and can damage the hot contact plates.

In contrast, infrared emitters transfer heat in a contact-free manner and generate the heat directly in the material. As a result, the material cannot get caught in the heat source. In practice, a module with six, short wave infrared emitters heats the ends of the prepared cylinder halves. The module is then automatically retracted and the halves with the soft, heated ends are pressed together and welded.

Tests have demonstrated that this joint withstands very high pressures up to 28 bar without breaking. Also, because of the contact-free heating, there is no need for continuous cleaning of the heat source. The total process is very energy-efficient as the infrared emitter is switched on only when heat is needed.

Energy Efficiency By Exact Matching

Infrared heating technology offers many possibilities for optimising energy usage in industrial processes:

• High heat transfer capacity
• Contact-free heat transfer
• High efficiency
• Efficient energy transfer by using the optimal wavelength
• Localised energy input by matching the heating to the shape
of the product to be heated
• Time focused energy input because of the rapid response times.
Infrared heat is always used when heating processes need to meet specific requirements in terms of place, time and quality.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China and Australia, is one of the technology- and market-leaders in the production of specialist light sources. In 2009, Heraeus Noblelight had an annual turnover of 71.6 Million € and employed 707 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical measurement techniques

Heraeus
The precious metals and technology group headquartered in Hanau, Germany, is a global, family company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 2.6 billion and precious metal trading revenues of € 13.6 billion, as well as over 12,300 employees in more than 110 companies worldwide, Heraeus holds a leading position in its global markets.

For further information please contact:

Technical:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
Tel +49 6181/35-8545, Fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
Abteilung Marketing/Werbung
Tel +49 6181/35-8547, Fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com
http://www.heraeus-noblelight.com/infrared

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>