Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective light amplifiers

26.04.2012
Physicists from Münster and Beijing develop new type of composite polymer / Cover story in “Advanced Materials” journal
Physicists from Münster University (WWU) and the Chinese Academy of Sciences in Beijing have jointly developed a new type of composite polymer whose photoactive features far exceed those of conventional polymers. The physicists’ work is the cover story of the April 24 issue of the prestigious specialist journal “Advanced Materials”.

The new composite polymer exhibits outstanding photorefractive features, which means that incident light influences the structure of the material. The structure thus produced can then, in turn, amplify the light. To achieve this, the team of scientists used diperylene bisimide instead of the traditional fullerenes, which have a football-type structure and are also known as buckyball molecules. “As a result,” says physicist Prof. Cornelia Denz, team leader of the Nonlinear Photonics research group, “the material is active over the entire visible light spectrum and can amplify light considerably more effectively.”

Such composite polymers, say the researchers, have great potential for use in 3D imaging displays or in the holographic imaging of living tissue. The material is also one of the most attractive candidates for applications in the field of solar cells. “This means,” says Denz, “that not only the fields of medical diagnostics and energy technology, but also the entertainment industry, are very interested in such new ‘soft’ matter for these applications.” In addition to polymers, this soft matter includes for example biological cell membranes, gels and liquid crystals. Soft matter plays a key role in many fields of research.

The team made their developments as part of “Multilevel Molecular Assemblies”, the first Sino-German collaborative transregional research centre, funded by the German Research Foundation. This ‘transregio’ is a project run jointly by the University of Münster, Tsinghua University and the Chinese Academy of Sciences. The researchers have patented the new material in Germany and China, which means that the development has led to the first patent resulting from a collaboration between a German and a Chinese university. Making the cover of “Advanced Materials” reflects the high level of importance that the editors of the journal attach to the scientists’ work.

Original publication:

Ditte, K., Jiang, W., Schemme, T., Denz, C. and Wang, Z. (2012), Photorefractive Materials: Innovative Sensitizer DiPBI Outperforms PCBM (Adv. Mater. 16/2012). Adv. Mater., 24: 2061. doi: 10.1002/adma.201290089

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/
http://www.uni-muenster.de/Physik.AP/Denz/en/index.html
http://www.uni-muenster.de/TRR61/

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>