Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effective light amplifiers

26.04.2012
Physicists from Münster and Beijing develop new type of composite polymer / Cover story in “Advanced Materials” journal
Physicists from Münster University (WWU) and the Chinese Academy of Sciences in Beijing have jointly developed a new type of composite polymer whose photoactive features far exceed those of conventional polymers. The physicists’ work is the cover story of the April 24 issue of the prestigious specialist journal “Advanced Materials”.

The new composite polymer exhibits outstanding photorefractive features, which means that incident light influences the structure of the material. The structure thus produced can then, in turn, amplify the light. To achieve this, the team of scientists used diperylene bisimide instead of the traditional fullerenes, which have a football-type structure and are also known as buckyball molecules. “As a result,” says physicist Prof. Cornelia Denz, team leader of the Nonlinear Photonics research group, “the material is active over the entire visible light spectrum and can amplify light considerably more effectively.”

Such composite polymers, say the researchers, have great potential for use in 3D imaging displays or in the holographic imaging of living tissue. The material is also one of the most attractive candidates for applications in the field of solar cells. “This means,” says Denz, “that not only the fields of medical diagnostics and energy technology, but also the entertainment industry, are very interested in such new ‘soft’ matter for these applications.” In addition to polymers, this soft matter includes for example biological cell membranes, gels and liquid crystals. Soft matter plays a key role in many fields of research.

The team made their developments as part of “Multilevel Molecular Assemblies”, the first Sino-German collaborative transregional research centre, funded by the German Research Foundation. This ‘transregio’ is a project run jointly by the University of Münster, Tsinghua University and the Chinese Academy of Sciences. The researchers have patented the new material in Germany and China, which means that the development has led to the first patent resulting from a collaboration between a German and a Chinese university. Making the cover of “Advanced Materials” reflects the high level of importance that the editors of the journal attach to the scientists’ work.

Original publication:

Ditte, K., Jiang, W., Schemme, T., Denz, C. and Wang, Z. (2012), Photorefractive Materials: Innovative Sensitizer DiPBI Outperforms PCBM (Adv. Mater. 16/2012). Adv. Mater., 24: 2061. doi: 10.1002/adma.201290089

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/
http://www.uni-muenster.de/Physik.AP/Denz/en/index.html
http://www.uni-muenster.de/TRR61/

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>