Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Effect Of Defects In Structural Composites

11.11.2008
The Instituto Madrileño de Estudios Avanzados en Materiales [Madrid Institute of Advanced Studies in Materials] (IMDEA Materiales) is leading the ambitious European project DEFCOM, the objective of which is to develop non-destructive simulation and characterisation tools that enable manufacturers of structural composites to distinguish between different types of defects and thus increase the reliability of these materials.

Polymer matrix composites are currently used in many structural applications that require a significant reduction in weight for energy and/or environmental reasons. A paradigmatic example is the new composites developed for aeronautical applications.

For example, as much as 25% of the weight of the new AIRBUS A380 aircraft is made up of composites (GLARE® and fibreglass and carbon fibre composites) in its wings, fuselage and tail sections and the new Boeing 787 Dreamliner boasts the first fuselage made entirely of composites. However, for these structural designs to be truly efficient, these new materials must be exploited to their maximum potential.

Unless our knowledge of the materials progresses, this potential will be restricted by the presence of internal defects (delaminations, voids, wrinkles, etc.), which arise either from the manufacturing process or during the assembly and maintenance of these structures.

But, how can these internal defects be found? And once they have been located, what makes the difference between a defect being harmless and it genuinely compromising the structural integrity of the material? Currently, the aeronautical industry is required to carry out vast batteries of mechanical tests on different scales (from the material itself, through sub-components, to the entire structure), which can take as long as seven years, to validate and certify new materials for use. Wouldn't it be better to have the necessary understanding to be able to predict the mechanical behaviour of a new composite and, more importantly, the effect of any defects that could occur? Following several recent advances, this understanding is now within the reach of Materials Science and Engineering.

On the one hand, non-destructive analysis techniques have been developed, such as X-ray computed tomography. This technique is based on computer-assisted reconstruction of the three-dimensional microstructure of the material based on X-ray radiographies taken from various viewing angles. The development of new X-ray generation and detection techniques means it is now possible to achieve sub-micrometer resolutions, making this technique a valuable tool for internal characterisation of defects and the study of propagation of damage in composites with great reliability, as can be seen in the following images.

On the other, new simulation strategies and the increase in computational power over recent years have made it possible to develop powerful micro- and meso-mechanical models. These explicitly take into account the configuration of fibres (and the typology of the defects), making it possible to predict both the mechanical behaviour and the mechanisms responsible for failure, as well as how they interact with pre-existing defects in the material.

In order to go into greater depth on these aspects and to develop tools that will enable composite manufacturers to distinguish between the various types of defects, IMDEA-Materiales is leading the DEFCOM project, with funding from the regional government of Madrid through the ERA-net MATERA network. The consortium, made up of Austrian universities and companies from aeronautical industry (SECAR) and the wind power sector, will spend three years working in this subject. For this, IMDEA-Materiales has a state-of-the-art X-ray nanotomography device, Phoenix Nanotom, with a nominal resolution of 0.3?m, and is using the most advanced multi-scale simulation techniques applied to composites.

IMDEA | alfa
Further information:
http://www.imdea.org

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>