Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Effect Of Defects In Structural Composites

11.11.2008
The Instituto Madrileño de Estudios Avanzados en Materiales [Madrid Institute of Advanced Studies in Materials] (IMDEA Materiales) is leading the ambitious European project DEFCOM, the objective of which is to develop non-destructive simulation and characterisation tools that enable manufacturers of structural composites to distinguish between different types of defects and thus increase the reliability of these materials.

Polymer matrix composites are currently used in many structural applications that require a significant reduction in weight for energy and/or environmental reasons. A paradigmatic example is the new composites developed for aeronautical applications.

For example, as much as 25% of the weight of the new AIRBUS A380 aircraft is made up of composites (GLARE® and fibreglass and carbon fibre composites) in its wings, fuselage and tail sections and the new Boeing 787 Dreamliner boasts the first fuselage made entirely of composites. However, for these structural designs to be truly efficient, these new materials must be exploited to their maximum potential.

Unless our knowledge of the materials progresses, this potential will be restricted by the presence of internal defects (delaminations, voids, wrinkles, etc.), which arise either from the manufacturing process or during the assembly and maintenance of these structures.

But, how can these internal defects be found? And once they have been located, what makes the difference between a defect being harmless and it genuinely compromising the structural integrity of the material? Currently, the aeronautical industry is required to carry out vast batteries of mechanical tests on different scales (from the material itself, through sub-components, to the entire structure), which can take as long as seven years, to validate and certify new materials for use. Wouldn't it be better to have the necessary understanding to be able to predict the mechanical behaviour of a new composite and, more importantly, the effect of any defects that could occur? Following several recent advances, this understanding is now within the reach of Materials Science and Engineering.

On the one hand, non-destructive analysis techniques have been developed, such as X-ray computed tomography. This technique is based on computer-assisted reconstruction of the three-dimensional microstructure of the material based on X-ray radiographies taken from various viewing angles. The development of new X-ray generation and detection techniques means it is now possible to achieve sub-micrometer resolutions, making this technique a valuable tool for internal characterisation of defects and the study of propagation of damage in composites with great reliability, as can be seen in the following images.

On the other, new simulation strategies and the increase in computational power over recent years have made it possible to develop powerful micro- and meso-mechanical models. These explicitly take into account the configuration of fibres (and the typology of the defects), making it possible to predict both the mechanical behaviour and the mechanisms responsible for failure, as well as how they interact with pre-existing defects in the material.

In order to go into greater depth on these aspects and to develop tools that will enable composite manufacturers to distinguish between the various types of defects, IMDEA-Materiales is leading the DEFCOM project, with funding from the regional government of Madrid through the ERA-net MATERA network. The consortium, made up of Austrian universities and companies from aeronautical industry (SECAR) and the wind power sector, will spend three years working in this subject. For this, IMDEA-Materiales has a state-of-the-art X-ray nanotomography device, Phoenix Nanotom, with a nominal resolution of 0.3?m, and is using the most advanced multi-scale simulation techniques applied to composites.

IMDEA | alfa
Further information:
http://www.imdea.org

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>