Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Effect Of Defects In Structural Composites

The Instituto Madrileño de Estudios Avanzados en Materiales [Madrid Institute of Advanced Studies in Materials] (IMDEA Materiales) is leading the ambitious European project DEFCOM, the objective of which is to develop non-destructive simulation and characterisation tools that enable manufacturers of structural composites to distinguish between different types of defects and thus increase the reliability of these materials.

Polymer matrix composites are currently used in many structural applications that require a significant reduction in weight for energy and/or environmental reasons. A paradigmatic example is the new composites developed for aeronautical applications.

For example, as much as 25% of the weight of the new AIRBUS A380 aircraft is made up of composites (GLARE® and fibreglass and carbon fibre composites) in its wings, fuselage and tail sections and the new Boeing 787 Dreamliner boasts the first fuselage made entirely of composites. However, for these structural designs to be truly efficient, these new materials must be exploited to their maximum potential.

Unless our knowledge of the materials progresses, this potential will be restricted by the presence of internal defects (delaminations, voids, wrinkles, etc.), which arise either from the manufacturing process or during the assembly and maintenance of these structures.

But, how can these internal defects be found? And once they have been located, what makes the difference between a defect being harmless and it genuinely compromising the structural integrity of the material? Currently, the aeronautical industry is required to carry out vast batteries of mechanical tests on different scales (from the material itself, through sub-components, to the entire structure), which can take as long as seven years, to validate and certify new materials for use. Wouldn't it be better to have the necessary understanding to be able to predict the mechanical behaviour of a new composite and, more importantly, the effect of any defects that could occur? Following several recent advances, this understanding is now within the reach of Materials Science and Engineering.

On the one hand, non-destructive analysis techniques have been developed, such as X-ray computed tomography. This technique is based on computer-assisted reconstruction of the three-dimensional microstructure of the material based on X-ray radiographies taken from various viewing angles. The development of new X-ray generation and detection techniques means it is now possible to achieve sub-micrometer resolutions, making this technique a valuable tool for internal characterisation of defects and the study of propagation of damage in composites with great reliability, as can be seen in the following images.

On the other, new simulation strategies and the increase in computational power over recent years have made it possible to develop powerful micro- and meso-mechanical models. These explicitly take into account the configuration of fibres (and the typology of the defects), making it possible to predict both the mechanical behaviour and the mechanisms responsible for failure, as well as how they interact with pre-existing defects in the material.

In order to go into greater depth on these aspects and to develop tools that will enable composite manufacturers to distinguish between the various types of defects, IMDEA-Materiales is leading the DEFCOM project, with funding from the regional government of Madrid through the ERA-net MATERA network. The consortium, made up of Austrian universities and companies from aeronautical industry (SECAR) and the wind power sector, will spend three years working in this subject. For this, IMDEA-Materiales has a state-of-the-art X-ray nanotomography device, Phoenix Nanotom, with a nominal resolution of 0.3?m, and is using the most advanced multi-scale simulation techniques applied to composites.

IMDEA | alfa
Further information:

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>