Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eco-Friendly: Lead-Free Joining of Electronic Components

15.12.2009
Using two lasers, electronic components can be welded onto circuit boards, thus avoiding the use of lead in soldering material.

The goal of a new research project at the Laser Zentrum Hannover e.V. (LZH) is to weld electronic components for televisions, cell phones, computers etc. quickly, easily and lead-free onto printed circuit boards.

To accomplish this, a "two-laser-solution" is being used. A green laser with low output power ensures optimal and repeatable process conditions, while an infrared laser with higher output power is used to actually weld the components. Since components are welded and not soldered, lead-based soldering material is not needed.

Infrared lasers (wavelength = 1064 nm) have already proven their value in numerous micro-welding applications. However, if copper or copper alloys must be joined, the laser beam is subject to reflection by material surface. Minor irregularities on the surface such as oxidation can have a highly negative influence on the process.

With the two-laser-solution, the component is first irradiated with a low-power, green laser (wave length = 532 nm) before the actual welding takes place. The radiation of the green laser is absorbed more easily, and the negative influences of irregularities on the component surface are minimized. Subsequently, the following welding process with the infrared laser can take place under consistent conditions, and the combination of the advantages of the two lasers - process safety at 532 nm and high output power at 1062 nm - can be used to produce high quality welds for electronic components.

The two-laser-process is important for industrial production for several reasons. Electronic assemblies are increasingly subject to higher temperatures, and accordingly, they cannot be soldered and must be welded. Also, welding does not need a soldering material and thus, the legal requirements for a lead-free joining technique can be fulfilled. To support industrial implementation, the LZH and the other project are working on the development of the necessary laser sources, circuit boards, optics, etc..

The project "SUPREME" is supported by the German Federal Ministry of Education and Research (BMBF) within the framework concept "Research for Tomorrow's Production", together with project management Forschungszentrum Karlsruhe, Production and Manufacturing Technologies division.

Contact:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | idw
Further information:
http://www.lzh.de

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>