Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dyeing easier : new potential for dyeing polyester with chitosan

Najua Tulos and co-researchers of the Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, studied the potential of chitosan to dye polyester fabric. Produced commercially by removing the acetyl groups from chitin (a derivative of glucose), chitosan was found to greatly improve the colourfastness of polyester fabrics.

Polyester is a man-made fibre that is extensively produced in factories for clothing and home furnishings.

Commercial chitosan is derived from the shells of shrimp and other sea crustaceans, including Pandalus borealis, pictured here.

Indeed, polyester has taken the world by storm. Its wide use reflects its range of pleasing properties, high resilience, stretch and recovery; good strength and dimensional stability; it is also highly wrinkle resistant. The insoluble nature of polyester fibres when exposed to water also limits enzymatic hydrolysis to the surface, thus improving the fibre surface wettability.

However, polyester does not take dye well. That is, it is not easy to colour polyester. Polyester fibres have definitive hydrophobic character and high degree of crystallinity, thus being difficult to penetrate with dyes.

Disperse dye is the only effective dye for polyester and usually done at a high temperature (about 130ºC) in order to increase the dye up-take.

This research studied the potential of chitosan to dye polyester fabric at lower temperatures.

In the experiment, the white polyester fabric surface was treated with chitosan by exhaustion method, pad-dry-cure and ultrasound. The treated fabrics were then dyed with reactive dyes at low temperature. The colourfastness to washing, colourfastness to perspiration, colourfastness to rubbing/crocking and colourfastness to light were evaluated to measure the colour change and staining.
It was found that the dyed polyester had excellent colourfastness to washing with a rating between 4/5 and 5 for colour change, and 4/5 and 5 for staining. This was made possible as the surface of polyester was treated with chitosan solution. The chitosan made it dyeable even under lower temperatures.

They concluded that reactive dyes have higher affinity for polyester fibres after the fabric surface being treated.


Najua Tulos
Eryna Nasir
Wan Yunus Wan Ahmad

Faculty of Applied Sciences
Universiti Teknologi MARA (UiTM)
Shah Alam, Malaysia


Megawati Omar | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>