Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke scientists build a living patch for damaged hearts

07.05.2013
Duke University biomedical engineers have grown three-dimensional human heart muscle that acts just like natural tissue. This advancement could be important in treating heart attack patients or in serving as a platform for testing new heart disease medicines.

The "heart patch" grown in the laboratory from human cells overcomes two major obstacles facing cell-based therapies – the patch conducts electricity at about the same speed as natural heart cells and it "squeezes" appropriately. Earlier attempts to create functional heart patches have largely been unable to overcome those obstacles.

The source cells used by the Duke researchers were human embryonic stem cells. These cells are pluripotent, which means that when given the right chemical and physical signals, they can be coaxed by scientists to become any kind of cell – in this case heart muscle cells, known as cardiomyocytes.

"The structural and functional properties of these 3-D tissue patches surpass all previous reports for engineered human heart muscle," said Nenad Bursac, associate professor of biomedical engineering at Duke's Pratt School of Engineering. "This is the closest man-made approximation of native human heart tissue to date."

The results of Bursac's research, which is supported by the National Heart Lung and Blood Institute, were published on-line in the journal Biomaterials.

Bursac said this approach does not involve genetic manipulation of cells.

"In past studies, human stem cell-derived cardiomyocytes were not able to both rapidly conduct electrical activity and strongly contract as well as normal cardiomyocytes," Bursac said. "Through optimization of a three-dimensional environment for cell growth, we were able to 'push' cardiomyocytes to reach unprecedented levels of electrical and mechanical maturation."

The rate of functional maturation is an important element for the patch to become practical. In a developing human embryo, it takes about nine months for a neonatal functioning heart to develop and an additional few years to reach adult levels of function; however, advancing the functional properties of these bioengineered patches took a little more than a month, Bursac said. As technology advances, he said, the time should shorten.

"Currently, it would take us about five to six weeks starting from pluripotent stem cells to grow a highly functional heart patch," Bursac said.

"When someone has a heart attack, a portion of the heart muscle dies," Bursac said. "Our goal would be to implant a patch of new and functional heart tissue at the site of the injury as rapidly after heart attack as possible. Using a patient's own cells to generate pluripotent stem cells would add further advantage in that there would likely be no immune system reaction, since the cells in the patch would be recognized by the body as self."

In addition to a possible therapy for patients with heart disease, Bursac said that engineered heart tissues could also be used to effectively screen new drugs or therapies.

"Tests or trials of new drugs can be expensive and time-consuming," Bursac said. "Instead of, or along with testing drugs on animals, the ability to test on actual, functioning human tissue may be more predictive of the drugs' effects and help determine which drugs should go on to further studies."

Some drug tests are conducted on two-dimensional sheets of heart cells, but according to Bursac, the 3-D culture model provides a superior environment for functional maturation of cells. This is expected to better mimic real-world heart muscle responses to different drugs or toxins. Engineered heart tissues made with cells from patients with a cardiac genetic disease could be used as the model to study that disease and explore potential therapies.

The current experiments were conducted on one human pluripotent stem cell line. Bursac and his colleagues have reproduced their findings on two other cell lines and are testing additional lines. They are also planning to move to larger animal models to learn how the patch would become functionally integrated with its host and how the patch establishes connections with the circulatory system.

Other members of the research team were Donghui Zhang and Ilya Shadrin from Duke, and Jason Lam, Hai-Qian Xian and Ralph Snodgrass, from VistaGen Therapeutics, San Francisco, who provided cardiomyocytes for these studies. Bursac's team and VistaGen are collaborating to develop engineered cardiac tissues for more predictive drug screening and development.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>