Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving an Electron Spin Vortex “Skyrmion” with a Microcurrent

29.08.2012
Large Advance toward Realization of Technology for Manipulation of Magnetic Information with Low Current Density 1/100,000th that of Conventional Technology
RIKEN, the University of Tokyo, and NIMS succeeded in forming a skyrmion crystal, in which electron spin is aligned in a vortex shape, in a microdevice using the helimagnet FeGe, and driving the skyrmion crystal with an ultra-low current density less than 1/100,000 that of the current necessary to drive magnetic domain walls in ferromagnets.

As a result of this research, it was possible to obtain guidelines for the realization of a technology for manipulating the states of magnetic information media with extremely low power consumption.
This research result was achieved by a team headed by Dr. Xuizhen Yu, a Postdoctoral Researcher in the Strong-Correlation Physics Research Team of the Correlated Electron Research Group of the RIKEN Advanced Science Institute, Group Director Prof. Yoshinori Tokura of the University of Tokyo Graduate School of Engineering, and Dr. Koji Kimoto, Unit Director of the Surface Physics and Structure Unit, Advanced Key Technologies Division of NIMS.

Magnetic memory devices that use the direction of electron spin, which is the source of magnetism, as digital information have attracted attention as devices with the important features of high speed and non-volatility, etc. In recent years, numerous attempts have been made to manipulate that magnetic information electrically without utilizing a magnetic field. If a current is passed through a ferromagnet, it is possible to move the magnetic domain walls, which are the boundaries between domains where magnetization is upward-oriented and domains with downward orientation (at domain walls, the direction of magnetic spin gradually changes). Therefore, reversal of magnetization becomes possible and information can be written. However, in order to drive the domain walls in this manner, a large current density of at least approximately 105 A/cm2 was necessary. Because this causes large energy loss, in other words, large energy consumption, a method of manipulating magnetic information media with a smaller current density had been desired.

The research team investigated various functional magnetic materials, and in 2010, succeeded in forming and observing a skyrmion crystal by applying a weak magnetic field of less than 200 millitesla (mT) to a thin slice of the helimagnet FeGe at near room temperature. In the present research, the team fabricated microdevices with a length of 165ìm, width of 100ìm, and thicknesses of 100nm to 30ìm using the same FeGe. When a magnetic field of approximately 150mT at temperatures from -23°C to near-room temperature (-3°C) was applied, skymrion crystals in which a stable skyrmion with a diameter of about 70nm was aligned in a triangular lattice shape were observed. The team succeeded in driving the skymrion crystal with an ultra-low current density (the minimum density is approximately 5A/cm2), which is less than 1/100,000th that required to drive magnetic domain walls in conventional ferromagnets. The fact that the skymrion can be driven with this extremely low current density represents the first step toward the development of low power consumption magnetic memory devices using skymrions as an information medium. Various applications can also be expected in the field of spintronics, which is currently an area of active research as a next-generation electronic technology.

The main portion of the research result was achieved in the “Quantum Science on Strong Correlation” project (Core Researcher: Yoshinori Tokura) of the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) of the Japan Society for the Promotion of Science (JSPS), with system design by the Council for Science and Technology Policy, and was supported by the JSPS. Part of the research was also supported by the Strategic Basic Research Programs/ERATO (Exploratory Research for Advanced Technology) Type Research Projects of the Japan Science and Technology Agency (JST) and the Nanotechnology Network of Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT), and has been published in the online edition of the British science journal “Nature Communications” on August 7 (August 8 Japan time).

For more detail

Dr. Xiuzhen Yu
Strong-Correlation Physics Research Team,
Correlated Electron Research Group,
Advanced Science Institute, RIKEN
TEL: +81-48-462-1111(ext. 6324)
FAX: +81-48-462-4703

Prof. Yoshinori Tokura
Team Leader, Strong-Correlation Physics Research Team,
Group Director, Correlated Electron Research Group,
Advanced Science Institute, RIKEN
TEL:+81-3-5841-6870
FAX:+81-3-5841-6839

For more detail about “Quantum Science on Strong Correlation” project

Dr. Izumi Hirabayashi
Deputy Group Director, Correlated Electron Research Group, Advanced Science Institute,

Team Leader, Strong-Correlation Research Support Team, Correlated Electron Research Group, Advanced Science Institute, RIKEN
TEL: +81-48-462-4660
FAX: +81-48-462-1687

For general inquiry
RIKEN Public Relations Office
TEL:+81-48-462-9272
FAX:+81-48-462-4715

Mikiko Tanifuji | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>