Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving an Electron Spin Vortex “Skyrmion” with a Microcurrent

29.08.2012
Large Advance toward Realization of Technology for Manipulation of Magnetic Information with Low Current Density 1/100,000th that of Conventional Technology
RIKEN, the University of Tokyo, and NIMS succeeded in forming a skyrmion crystal, in which electron spin is aligned in a vortex shape, in a microdevice using the helimagnet FeGe, and driving the skyrmion crystal with an ultra-low current density less than 1/100,000 that of the current necessary to drive magnetic domain walls in ferromagnets.

As a result of this research, it was possible to obtain guidelines for the realization of a technology for manipulating the states of magnetic information media with extremely low power consumption.
This research result was achieved by a team headed by Dr. Xuizhen Yu, a Postdoctoral Researcher in the Strong-Correlation Physics Research Team of the Correlated Electron Research Group of the RIKEN Advanced Science Institute, Group Director Prof. Yoshinori Tokura of the University of Tokyo Graduate School of Engineering, and Dr. Koji Kimoto, Unit Director of the Surface Physics and Structure Unit, Advanced Key Technologies Division of NIMS.

Magnetic memory devices that use the direction of electron spin, which is the source of magnetism, as digital information have attracted attention as devices with the important features of high speed and non-volatility, etc. In recent years, numerous attempts have been made to manipulate that magnetic information electrically without utilizing a magnetic field. If a current is passed through a ferromagnet, it is possible to move the magnetic domain walls, which are the boundaries between domains where magnetization is upward-oriented and domains with downward orientation (at domain walls, the direction of magnetic spin gradually changes). Therefore, reversal of magnetization becomes possible and information can be written. However, in order to drive the domain walls in this manner, a large current density of at least approximately 105 A/cm2 was necessary. Because this causes large energy loss, in other words, large energy consumption, a method of manipulating magnetic information media with a smaller current density had been desired.

The research team investigated various functional magnetic materials, and in 2010, succeeded in forming and observing a skyrmion crystal by applying a weak magnetic field of less than 200 millitesla (mT) to a thin slice of the helimagnet FeGe at near room temperature. In the present research, the team fabricated microdevices with a length of 165ìm, width of 100ìm, and thicknesses of 100nm to 30ìm using the same FeGe. When a magnetic field of approximately 150mT at temperatures from -23°C to near-room temperature (-3°C) was applied, skymrion crystals in which a stable skyrmion with a diameter of about 70nm was aligned in a triangular lattice shape were observed. The team succeeded in driving the skymrion crystal with an ultra-low current density (the minimum density is approximately 5A/cm2), which is less than 1/100,000th that required to drive magnetic domain walls in conventional ferromagnets. The fact that the skymrion can be driven with this extremely low current density represents the first step toward the development of low power consumption magnetic memory devices using skymrions as an information medium. Various applications can also be expected in the field of spintronics, which is currently an area of active research as a next-generation electronic technology.

The main portion of the research result was achieved in the “Quantum Science on Strong Correlation” project (Core Researcher: Yoshinori Tokura) of the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) of the Japan Society for the Promotion of Science (JSPS), with system design by the Council for Science and Technology Policy, and was supported by the JSPS. Part of the research was also supported by the Strategic Basic Research Programs/ERATO (Exploratory Research for Advanced Technology) Type Research Projects of the Japan Science and Technology Agency (JST) and the Nanotechnology Network of Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT), and has been published in the online edition of the British science journal “Nature Communications” on August 7 (August 8 Japan time).

For more detail

Dr. Xiuzhen Yu
Strong-Correlation Physics Research Team,
Correlated Electron Research Group,
Advanced Science Institute, RIKEN
TEL: +81-48-462-1111(ext. 6324)
FAX: +81-48-462-4703

Prof. Yoshinori Tokura
Team Leader, Strong-Correlation Physics Research Team,
Group Director, Correlated Electron Research Group,
Advanced Science Institute, RIKEN
TEL:+81-3-5841-6870
FAX:+81-3-5841-6839

For more detail about “Quantum Science on Strong Correlation” project

Dr. Izumi Hirabayashi
Deputy Group Director, Correlated Electron Research Group, Advanced Science Institute,

Team Leader, Strong-Correlation Research Support Team, Correlated Electron Research Group, Advanced Science Institute, RIKEN
TEL: +81-48-462-4660
FAX: +81-48-462-1687

For general inquiry
RIKEN Public Relations Office
TEL:+81-48-462-9272
FAX:+81-48-462-4715

Mikiko Tanifuji | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material could lead to erasable and rewriteable optical chips
07.12.2016 | University of Texas at Austin

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>