Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drexel reserchers roll out new method for making the invisible brushes that repel dirt

24.03.2016

Polymer crystal 'turf' improves nanobrush-making process

You might not be aware of it, but invisible carpets of polymers are keeping things from being sticky right now. The lenses of your glasses might be coated with them to stave off smudges. They're keeping the underbellies of ships from corroding, artificial joints from locking up and medical devices from gathering germs. The name "polymer nanobrush" doesn't seem fitting because these bristly materials aren't used to sweep away debris, they actually prevent it from accumulating at all.


Drexel materials scientist Christopher Li, PhD, reports a new way for making polymer nanobrushes that equates to growing a lawn by rolling out sod instead of planting seeds.

Credit: Drexel University

The science behind their production sounds a lot like turf management on a golf course. But for years it's been done one blade -- or bristle -- at a time, or by sprinkling some seeds and hoping for the best. Materials scientists from Drexel University have planted a new idea -- that they can make better brushes by rolling them out like sod.

Until recently, polymer brushes have been made in two main ways. One, called "grafting-from," is like sprinkling seeds on soil and waiting for grass to take root. The other, "grafting-to" is more like transplanting individual blades of grass. In a recent edition of Nature Communications, Christopher Li, PhD, a professor in Drexel's College of Engineering, explains his new method for brush making that's gives scientists a higher degree of control over the shape of the brush and bristles, and is much more efficient.

Li's approach involves growing a functional two-dimensional sheet of polymer crystals -- similar to a nanoscale piece of double-sided tape. When the sheet is stuck to an existing substrate, and the crystals are dissolved, the remaining polymer chains spring up, forming the bristles of the brush.

"The past few decades witnessed exciting progresses in studies on polymer brushes, and they show great promises in various fields, including coating, biomedical, sensing, catalysis to name just a few," said Li, whose research in the Drexel Soft Materials Lab focuses on materials that have complex structural and dynamic properties -- like polymer brushes. "We believe that our discovery of a new way to make polymer brushes is a significant advance in the field and will enable use of the brushes in exciting new ways."

Polymer brush materials are especially useful in situations where pieces need to fit tightly together but need to be able to move without friction throwing a wrench in the works. They are also effective for keeping important surfaces free of particles, chemicals, proteins and other fouling agents. Polymer brushes have been used to coat everything from eyeglass lenses, boats and medical devices -- where they keep away smudges, damaging chemicals and germs -- to artificial joints and mechanical components in vehicles -- where they act as a lubricant.

The relative amount of friction that can be reduced by the brushes has to do with how long and rigid the polymers are and how far apart they're spaced. Li's method is significant because he can precisely tune all of these characteristics because he can control the formation of the two-dimensional crystal sheets. In the paper he reports the creation of the most densely packed polymer brushes to date, with bristles less than a nanometer apart.

"These surface-functionalized 2D single crystals provide a unique opportunity for the synthesis of well-defined polymer brushes," Li said. "The key step in our method is pre-assembling polymers into polymer single crystals before coupling them onto the substrate."

For Li's group -- which has pioneered research in growing spherical crystals, and solid polymer electrolytes for energy storage -- controlling the formation of crystalized polymers for an application like this is almost second nature.

According to the paper, the team is even able to create polymer crystals with anchor points on both ends so they form a loop, which is a much sturdier bristle formation than a single-anchored polymer.

"What this all means is that one day engineers will be able to tailor-make incredibly durable polymer brush coatings to extend the usage lives of all kinds of uniquely shaped joints and couplings," Li said. "This shifts the way we look at making the brushes and I think it will have a lasting impact on this area of research."

Media Contact

Britt Faulstick
bef29@drexel.edu
215-895-2617

 @DrexelNews

http://www.Drexel.edu/ 

Britt Faulstick | EurekAlert!

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>