Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drexel Researchers Open Path to Finding Rare, Polarized Metals

03.04.2014

Drexel University researchers are turning some of the basic tenets of chemistry and physics upside down to cut a trail toward the discovery of a new set of materials. They’re called “polar metals” and, according to many of the scientific principles that govern the behavior of atoms, they probably shouldn’t exist.

James Rondinelli, PhD, a professor in the College of Engineering, and Danilo Puggioni, PhD, a postdoctoral researcher in the College, have shed light on this rare breed of electrically conductive polar metal—whose atomic makeup actually has more in common with a drop of water than a flake of rust—using an advanced computing method called density functional theory.


Drexel materials scientists predicted the existence of a polarized metal called strontium-calcium ruthenate.

This automated system of virtual chemical match-making sifts through volumes of structural chemistry data to churn out combinations of elements that could exist as stable compounds. Rondinelli and Puggioni, both members of Drexel’s Material’s Theory and Design Group in the College's Materials Science Engineering department, worked through a step-by-step process to isolate shared features of known polar metals, thus creating a way to classify them.

“We sought first to classify all known compounds and look for commonalities and ways to systematically describe them,” Rondinelli said. “By creating the classification scheme we identified the key features. That knowledge was formulated into a working principle that allowed us to predict a new compound using quantum mechanical calculations.”

These metals are considered rare because of their unusual atomic and chemical structure, specifically, an imbalanced distribution of electrons in a material with metal cations and oxygen. Most metallic materials have an even or symmetric distribution of electrons, in other words it does not have positively and negatively charged poles. But these asymmetric polar metals, appear to be an exception to the rule.    

“They challenge our notions of what it means for a material to be a metal or to be polar,” Rondinelli said. “By polar, I mean just like the water molecule, which has an asymmetric distribution of charge. It’s nearly the same case here, where the material we predict is polar, but it is simultaneously metallic owing to mobile electrons, rather than bound electrons.”

Scientists have hypothesized the existence of polar metals, dubbed “metallic ferroeletrics” by Nobel Laureate Phil Anderson, since the 1960s -but with little theoretical understanding of how to discover them. Since then, researchers have essentially stumbled upon about 30 metals with asymmetric charge distributions.  

More than half a century later, Rondinelli and Puggioni were able to examine the crystal structure of these known polar metals, and show that the geometric arrangement of atoms is key to understanding their asymmetric charge distribution. This information, in turn, will make it possible for materials scientists to discover more compounds.

Putting their theory to the test, the duo designed a polar metal of their own. The material, chemically termed strontium-calcium ruthenate, (Sr,Ca)Ru­O6, is currently in the theoretical stage, but Rondinelli and Puggioni are working with experimental groups around the country to produce the compound in a laboratory.

While it’s too early to predict what applications these materials are ideally suited for, other materials in this class of polar metals are superconducting—they are able to conduct electricity with zero resistance—so they could find use in a variety of advanced electronic and thermal devices. The pair’s research was funded by the Army Research Office’s Young Investigator Program and was recently published in Nature Communications.

“The way these materials behave and the reasons for their stability are rather unconventional, yet our classification scheme provides a general design strategy that could guide the discovery and realization of many more polar metals,” said Rondinelli. “I don’t believe these materials are as rare as is currently thought despite their counterintuitive nature; researchers may have simply been looking in the wrong places.”

Puggioni D. & Rondinelli J.M. (2014). Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy, Nature Communications, 5 DOI:

News Media Contact

Britt Faulstick

News Officer, University Communications

britt.faulstick@drexel.edu
Phone: 215-895-2617
Mobile: 215-796-5161

Britt Faulstick | EurekAlert!
Further information:
http://drexel.edu/now/news-media/releases/archive/2014/April/PolarMetals/

Further reports about: Electrons Metals atomic structure classification compounds

More articles from Materials Sciences:

nachricht Innovate coating extends the life of materials for industrial use
28.09.2016 | Investigación y Desarrollo

nachricht Lowering the Heat Makes New Materials Possible While Saving Energy
26.09.2016 | Penn State Materials Research Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>