Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drexel Researchers Open Path to Finding Rare, Polarized Metals


Drexel University researchers are turning some of the basic tenets of chemistry and physics upside down to cut a trail toward the discovery of a new set of materials. They’re called “polar metals” and, according to many of the scientific principles that govern the behavior of atoms, they probably shouldn’t exist.

James Rondinelli, PhD, a professor in the College of Engineering, and Danilo Puggioni, PhD, a postdoctoral researcher in the College, have shed light on this rare breed of electrically conductive polar metal—whose atomic makeup actually has more in common with a drop of water than a flake of rust—using an advanced computing method called density functional theory.

Drexel materials scientists predicted the existence of a polarized metal called strontium-calcium ruthenate.

This automated system of virtual chemical match-making sifts through volumes of structural chemistry data to churn out combinations of elements that could exist as stable compounds. Rondinelli and Puggioni, both members of Drexel’s Material’s Theory and Design Group in the College's Materials Science Engineering department, worked through a step-by-step process to isolate shared features of known polar metals, thus creating a way to classify them.

“We sought first to classify all known compounds and look for commonalities and ways to systematically describe them,” Rondinelli said. “By creating the classification scheme we identified the key features. That knowledge was formulated into a working principle that allowed us to predict a new compound using quantum mechanical calculations.”

These metals are considered rare because of their unusual atomic and chemical structure, specifically, an imbalanced distribution of electrons in a material with metal cations and oxygen. Most metallic materials have an even or symmetric distribution of electrons, in other words it does not have positively and negatively charged poles. But these asymmetric polar metals, appear to be an exception to the rule.    

“They challenge our notions of what it means for a material to be a metal or to be polar,” Rondinelli said. “By polar, I mean just like the water molecule, which has an asymmetric distribution of charge. It’s nearly the same case here, where the material we predict is polar, but it is simultaneously metallic owing to mobile electrons, rather than bound electrons.”

Scientists have hypothesized the existence of polar metals, dubbed “metallic ferroeletrics” by Nobel Laureate Phil Anderson, since the 1960s -but with little theoretical understanding of how to discover them. Since then, researchers have essentially stumbled upon about 30 metals with asymmetric charge distributions.  

More than half a century later, Rondinelli and Puggioni were able to examine the crystal structure of these known polar metals, and show that the geometric arrangement of atoms is key to understanding their asymmetric charge distribution. This information, in turn, will make it possible for materials scientists to discover more compounds.

Putting their theory to the test, the duo designed a polar metal of their own. The material, chemically termed strontium-calcium ruthenate, (Sr,Ca)Ru­O6, is currently in the theoretical stage, but Rondinelli and Puggioni are working with experimental groups around the country to produce the compound in a laboratory.

While it’s too early to predict what applications these materials are ideally suited for, other materials in this class of polar metals are superconducting—they are able to conduct electricity with zero resistance—so they could find use in a variety of advanced electronic and thermal devices. The pair’s research was funded by the Army Research Office’s Young Investigator Program and was recently published in Nature Communications.

“The way these materials behave and the reasons for their stability are rather unconventional, yet our classification scheme provides a general design strategy that could guide the discovery and realization of many more polar metals,” said Rondinelli. “I don’t believe these materials are as rare as is currently thought despite their counterintuitive nature; researchers may have simply been looking in the wrong places.”

Puggioni D. & Rondinelli J.M. (2014). Designing a robustly metallic noncenstrosymmetric ruthenate oxide with large thermopower anisotropy, Nature Communications, 5 DOI:

News Media Contact

Britt Faulstick

News Officer, University Communications
Phone: 215-895-2617
Mobile: 215-796-5161

Britt Faulstick | EurekAlert!
Further information:

Further reports about: Electrons Metals atomic structure classification compounds

More articles from Materials Sciences:

nachricht For graphite pellets, just add elbow grease
23.03.2018 | Rice University

nachricht Sensitive grip
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>