Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doubling up improves nanoring design

04.11.2015

A new nanoring design shows potential for generating short magnetic pulses and could be used to explore magnetic switching in materials.

A bimetallic nanoring that generates a short magnetic pulse when irradiated by a laser pulse has been theoretically studied by researchers at Singapore's Agency for Science, Technology and Research (A*STAR). It shows exciting potential for investigating magnetic switching and realizing rapid data storage [1].


When a light pulse (black arrow indicates its electric field and blue arrow shows propagation direction) is irradiated on a nanoring made of nickel and gold on silica substrate (blue), the nanoring generates a magnetic pulse via the thermoelectric effect.

Adapted from Ref. 1 and licensed under CC-BY-3.0 © 2015 G. Vienne et al.

Unlike their electrical and optical equivalents, ultrashort magnetic pulses have proved very difficult to generate. These pulses are needed to explore magnetic switching in materials — a process that underpins virtually all of today’s data storage technology. However, most methods for generating magnetic pulses use large-scale particle accelerators or are limited to specific materials and do not produce tightly confined magnetic fields.

Now, Guillaume Vienne and colleagues at the A*STAR Data Storage Institute have theoretically proposed a nanoring that consists of four alternating gold and nickel sectors (see image). Their calculations predict that this nanoring will generate magnetic pulses shorter than a trillionth of a second when irradiated by an ultrashort laser pulse.

The ring is essentially a nanoscale version of the setup used by physicist Thomas Seebeck in 1821 when he discovered that a temperature difference produces an electric voltage in certain materials — now known as the thermoelectric effect. The nanoring operates in a similar way to Seebeck’s setup in that heating it produces an uneven temperature distribution, which results in current flow and generates a magnetic field.

The nanoring is heated by irradiation with a laser pulse. Its small size gives rise to resonant collective oscillations of conduction electrons, known as plasmon resonance. This results in efficient and uneven heating, producing hot and cool spots in the ring between which currents flow as a result of the thermoelectric effect. Finally, these currents generate a magnetic pulse.

Vienne sees the nanoring as being unique. “There simply isn’t any source that produces a magnetic field that is so localized in both time and space. So it’s a kind of a new object,” he enthuses.

The four-sector nanoring has two significant advantages over a previous design that had only two sectors. It generates a higher current and hence a higher magnetic field. In addition, the four-sector nanoring has a lower maximum temperature, which is fortunate since the ring will melt if its maximum temperature exceeds its melting point.

The A*STAR team is currently collaborating with scientists at Southampton University in the United Kingdom to fabricate and characterize such a nanoring.

The researchers are enthusiastic about its potential. “There is much debate about how fast magnetization can be switched,” says Vienne. “Our nanoring should advance that debate.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute. For more information about the team’s research, please visit the Advanced Concepts and Nanotechnology webpage.

Reference

[1] Vienne, G., Chen, X., Teh, Y. S., Ng, Y. J., Chia, N. O. & Ooi, C. P. Novel layout of a bi-metallic nanoring for magnetic field pulse generation from light. New Journal of Physics 17, 013409 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>