Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doubling up improves nanoring design

04.11.2015

A new nanoring design shows potential for generating short magnetic pulses and could be used to explore magnetic switching in materials.

A bimetallic nanoring that generates a short magnetic pulse when irradiated by a laser pulse has been theoretically studied by researchers at Singapore's Agency for Science, Technology and Research (A*STAR). It shows exciting potential for investigating magnetic switching and realizing rapid data storage [1].


When a light pulse (black arrow indicates its electric field and blue arrow shows propagation direction) is irradiated on a nanoring made of nickel and gold on silica substrate (blue), the nanoring generates a magnetic pulse via the thermoelectric effect.

Adapted from Ref. 1 and licensed under CC-BY-3.0 © 2015 G. Vienne et al.

Unlike their electrical and optical equivalents, ultrashort magnetic pulses have proved very difficult to generate. These pulses are needed to explore magnetic switching in materials — a process that underpins virtually all of today’s data storage technology. However, most methods for generating magnetic pulses use large-scale particle accelerators or are limited to specific materials and do not produce tightly confined magnetic fields.

Now, Guillaume Vienne and colleagues at the A*STAR Data Storage Institute have theoretically proposed a nanoring that consists of four alternating gold and nickel sectors (see image). Their calculations predict that this nanoring will generate magnetic pulses shorter than a trillionth of a second when irradiated by an ultrashort laser pulse.

The ring is essentially a nanoscale version of the setup used by physicist Thomas Seebeck in 1821 when he discovered that a temperature difference produces an electric voltage in certain materials — now known as the thermoelectric effect. The nanoring operates in a similar way to Seebeck’s setup in that heating it produces an uneven temperature distribution, which results in current flow and generates a magnetic field.

The nanoring is heated by irradiation with a laser pulse. Its small size gives rise to resonant collective oscillations of conduction electrons, known as plasmon resonance. This results in efficient and uneven heating, producing hot and cool spots in the ring between which currents flow as a result of the thermoelectric effect. Finally, these currents generate a magnetic pulse.

Vienne sees the nanoring as being unique. “There simply isn’t any source that produces a magnetic field that is so localized in both time and space. So it’s a kind of a new object,” he enthuses.

The four-sector nanoring has two significant advantages over a previous design that had only two sectors. It generates a higher current and hence a higher magnetic field. In addition, the four-sector nanoring has a lower maximum temperature, which is fortunate since the ring will melt if its maximum temperature exceeds its melting point.

The A*STAR team is currently collaborating with scientists at Southampton University in the United Kingdom to fabricate and characterize such a nanoring.

The researchers are enthusiastic about its potential. “There is much debate about how fast magnetization can be switched,” says Vienne. “Our nanoring should advance that debate.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute. For more information about the team’s research, please visit the Advanced Concepts and Nanotechnology webpage.

Reference

[1] Vienne, G., Chen, X., Teh, Y. S., Ng, Y. J., Chia, N. O. & Ooi, C. P. Novel layout of a bi-metallic nanoring for magnetic field pulse generation from light. New Journal of Physics 17, 013409 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>