Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA 'origami' could help build faster, cheaper computer chips

14.03.2016

Electronics manufacturers constantly hunt for ways to make faster, cheaper computer chips, often by cutting production costs or by shrinking component sizes. Now, researchers report that DNA, the genetic material of life, might help accomplish this goal when it is formed into specific shapes through a process reminiscent of the ancient art of paper folding.

The researchers present their work today at the 251st National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 12,500 presentations on a wide range of science topics.


Prototypes for cheaper computer chips are being built with metal-containing DNA origami structures.

Credit: Zoie Young, Kenny Lee and Adam Woolley

"We would like to use DNA's very small size, base-pairing capabilities and ability to self-assemble, and direct it to make nanoscale structures that could be used for electronics," Adam T. Woolley, Ph.D., says. He explains that the smallest features on chips currently produced by electronics manufacturers are 14 nanometers wide. That's more than 10 times larger than the diameter of single-stranded DNA, meaning that this genetic material could form the basis for smaller-scale chips.

"The problem, however, is that DNA does not conduct electricity very well," he says. "So we use the DNA as a scaffold and then assemble other materials on the DNA to form electronics."

To design computer chips similar in function to those that Silicon Valley churns out, Woolley, in collaboration with Robert C. Davis, Ph.D., and John N. Harb, Ph.D., at Brigham Young University, is building on other groups' prior work on DNA origami and DNA nanofabrication.

The most familiar form of DNA is a double helix, which consists of two single strands of DNA. Complementary bases on each strand pair up to connect the two strands, much like rungs on a twisted ladder. But to create a DNA origami structure, researchers begin with a long single strand of DNA. The strand is flexible and floppy, somewhat like a shoelace. Scientists then mix it with many other short strands of DNA -- known as "staples" -- that use base pairing to pull together and crosslink multiple, specific segments of the long strand to form a desired shape.

However, Woolley's team isn't content with merely replicating the flat shapes typically used in traditional two-dimensional circuits. "With two dimensions, you are limited in the density of components you can place on a chip," Woolley explains. "If you can access the third dimension, you can pack in a lot more components."

Kenneth Lee, an undergraduate who works with Woolley, has built a 3-D, tube-shaped DNA origami structure that sticks up like a smokestack from substrates, such as silicon, that will form the bottom layer of their chip. Lee has been experimenting with attaching additional short strands of DNA to fasten other components such as nano-sized gold particles at specific sites on the inside of the tube.

The researchers' ultimate goal is to place such tubes, and other DNA origami structures, at particular sites on the substrate. The team would also link the structures' gold nanoparticles with semiconductor nanowires to form a circuit. In essence, the DNA structures serve as girders on which to build an integrated circuit.

Lee is currently testing the characteristics of the tubular DNA. He plans to attach additional components inside the tube, with the eventual aim of forming a semiconductor.

Woolley notes that a conventional chip fabrication facility costs more than $1 billion, in part because the equipment necessary to achieve the minuscule dimensions of chip components is expensive and because the multi-step manufacturing process requires hundreds of instruments. In contrast, a facility that harnesses DNA's knack for self-assembly would likely entail much lower start-up funding, he states. "Nature works on a large scale, and it is really good at assembling things reliably and efficiently," he says. "If that could be applied in making circuits for computers, there's potential for huge cost savings."

###

A press conference on this topic will be held Monday, March 14, at 1 p.m. Pacific time in the San Diego Convention Center. Reporters may check-in at Room 16B (Mezzanine) in person, or watch live on YouTube http://bit.ly/ACSliveSanDiego. To ask questions online, sign in with a Google account.

The researchers acknowledge funding from the Semiconductor Research Corporation.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 158,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Note to journalists: Please report that this research is being presented at a meeting of the American Chemical Society.

Follow us: Twitter | Facebook

Title

3D DNA Origami Templated Nanoscale Device Fabrication

Abstract

Because electronic and mechanical devices continue to decrease in size, exploring nontraditional fabrication methods provides added opportunities. For example, materials not currently used in devices, such as biological molecules, can contribute to new fabrication procedures. Self-assembling biological molecules especially show promise as useful starting materials, because nanodevice fabrication can exploit interactions that lead to highly specific self-assembly. DNA origami is a method that folds pieces of single-stranded DNA into designed structures by taking advantage of nucleotide base-pairing. Designs that include single-stranded extensions can provide further attachment points for other materials such as metal nanoparticles and nanorods. Such specific placement of metal on a DNA origami template can create nanowires as part of a larger nanocircuit. 2-D DNA origami templates can help position materials in a planar circuit pattern, but 3-D DNA origami uses a third dimension to further compact the nanocircuit elements. To test possible applications of 3-D origami, I designed a tube-shaped DNA origami with a hollow center. To verify correct folding of DNA origami structures, I stained them with lanthanum (III) and lead (II) and imaged them with SEM. I also made two variations of the tube-shaped origami, one with a location for nanoparticle attachment at an end of the tube and one with a location for particle attachment in the center of the tube. To verify successful attachment of gold nanoparticles, I confirmed with SEM imaging the presence of origami-nanoparticle hybrids. This design provides several possibilities for attachment of nanomaterials, both inside the hollow center and to the outside of the tube, which provide a pathway to creating a vertical nanowire logic gate. A flat base-like DNA origami could then position an array of tube DNA origami structures for more complex applications. An array of this type could be a step towards making more compact electronics.

Media Contact

619-525-6215 (San Diego Press Center, March 13-16)

Michael Bernstein
202-872-6042 (D.C. Office)
301-275-3221 (Cell)
m_bernstein@acs.org

Katie Cottingham, Ph.D.
301-775-8455 (Cell)
k_cottingham@acs.org

@ACSpressroom
http://www.acs.org

Michael Bernstein | EurekAlert!

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>