Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA-based assembly line for precision nano-cluster construction

31.03.2009
Method could lead to rapid, reliable assembly of new biosensors and solar cells

Building on the idea of using DNA to link up nanoparticles - particles measuring mere billionths of a meter - scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have designed a molecular assembly line for predictable, high-precision nano-construction.

Such reliable, reproducible nanofabrication is essential for exploiting the unique properties of nanoparticles in applications such as biological sensors and devices for converting sunlight to electricity. The work will be published online March 29, 2009, by Nature Materials.

The Brookhaven team has previously used DNA, the molecule that carries life's genetic code, to link up nanoparticles in various arrangements, including 3-D nano-crystals. The idea is that nanoparticles coated with complementary strands of DNA - segments of genetic code sequence that bind only with one another like highly specific Velcro - help the nanoparticles find and stick to one another in highly specific ways. By varying the use of complementary DNA and strands that don't match, scientists can exert precision control over the attractive and repulsive forces between the nanoparticles to achieve the desired construction. Note that the short DNA linker strands used in these studies were constructed artificially in the laboratory and don't "code" for any proteins, as genes do.

The latest advance has been to use the DNA linkers to attach some of the DNA-coated nanoparticles to a solid surface to further constrain and control how the nanoparticles can link up. This yields even greater precision, and therefore a more predictable, reproducible high-throughput construction technique for building clusters from nanoparticles.

"When a particle is attached to a support surface, it cannot react with other molecules or particles in the same way as a free-floating particle," explained Brookhaven physicist Oleg Gang, who led the research at the Lab's Center for Functional Nanomaterials. This is because the support surface blocks about half of the particle's reactive surface. Attaching a DNA linker or other particle that specifically interacts with the bound particle then allows for the rational assembly of desired particle clusters.

"By controlling the number of DNA linkers and their length, we can regulate interparticle distances and a cluster's architecture," said Gang. "Together with the high specificity of DNA interactions, this surface-anchored technique permits precise assembly of nano-objects into more complex structures."

Instead of assembling millions and millions of nanoparticles into 3-D nanocrystals, as was done in the previous work, this technique allows the assembly of much smaller structures from individual particles. In the Nature Materials paper, the scientists describe the details for producing symmetrical, two-particle linkages, known as dimers, as well as small, asymmetrical clusters of particles - both with high yields and low levels of other, unwanted assemblies.

"When we arrange a few nanoparticles in a particular structure, new properties can emerge," Gang emphasized. "Nanoparticles in this case are analogous to atoms, which, when connected in a molecule, often exhibit properties not found in the individual atoms. Our approach allows for rational and efficient assembly of nano-'molecules.' The properties of these new materials may be advantageous for many potential applications."

For example, in the paper, the scientists describe an optical effect that occurs when nanoparticles are linked as dimer clusters. When an electromagnetic field interacts with the metallic particles, it induces a collective oscillation of the material's conductive electrons. This phenomenon, known as a plasmon resonance, leads to strong absorption of light at a specific wavelength.

"The size and distance between the linked particles affect the plasmonic behavior," said Gang. By adjusting these parameters, scientists might engineer clusters for absorbing a range of wavelengths in solar-energy conversion devices. Modulations in the plasmonic response could also be useful as a new means for transferring data, or as a signal for a new class of highly specific biosensors.

Asymmetric clusters, which were also assembled by the Brookhaven team, allow an even higher level of control, and therefore open new ways to design and engineer functional nanomaterials.

Because of its reliability and precision control, Brookhaven's nano-assembly method would be scalable for the kind of high-throughput production that would be essential for commercial applications. Brookhaven Lab has applied for a patent on the assembly method as well as several specific applications of the technology. For information about the patent or licensing this technology, contact Kimberley Elcess at (631) 344-4151, or elcess@bnl.gov.

In addition to Gang, the team included materials scientist Dmytro Nykypanchuk, summer student Marine Cuisinier, and biologist Daniel (Niels) van der Lelie, all from Brookhaven, and former Brookhaven chemist Matthew Maye, now at Syracuse University. Their work was funded by DOE's Office of Science and through a Goldhaber Distinguished Fellowship sponsored by Brookhaven Science Associates.

The Center for Functional Nanomaterials at BNL is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize, and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Brookhaven, Argonne, Lawrence Berkeley, Oak Ridge, and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov.

Related Links

DNA Technique Yields 3-D Crystalline Organization of Nanoparticles, 1/30/2008:
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=07-127
New DNA-Based Technique For Assembly of Nano- and Micro-sized Particles, 9/12/2007:

http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=07-94

Nanoparticle Assembly Enters the Fast Lane, 10/11/2006:
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=06-112
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov
http://www.bnl.gov/newsroom

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>