Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dissolvable Silicon Circuits and Sensors


Transient Electronics that Dissolve in Water Usher in Next Generation of Devices, from Green Technologies to Medical Implants

Electronic devices that dissolve completely in water, leaving behind only harmless end products, are part of a rapidly emerging class of technology pioneered by researchers at the University of Illinois at Urbana-Champaign.


A new generation of transient electronic devices function in water but dissolve when their function is no longer needed.

Early results demonstrate the entire complement of building blocks for integrated circuits, along with various sensors and actuators with relevance to clinical medicine, including most recently intracranial monitors for patients with traumatic brain injury.

The advances suggest a new era of devices that range from green consumer electronics to ‘electroceutical’ therapies, to biomedical sensor systems that do their work and then disappear.

John A. Rogers’ research group at the Department of Materials Science and Engineering Frederick Seitz Materials Research Laboratory is leading the development of such concepts, along with all of the required materials, device designs and fabrication techniques for applications that lie beyond the scope of semiconductor technologies that are available today.

“Our most recent combined developments in devices that address real challenges in clinical medicine and in advanced, high volume manufacturing strategies suggest a promising future for this new class of technology,” said Rogers. He will present these and other results at the AVS 61st International Symposium & Exhibition, being held November 9-14, 2014 in Baltimore, Md.

Practical applications might include: bioresorbable devices that reduce infection at a surgical site. Other examples are temporary implantable systems, such as electrical brain monitors to aid rehabilitation from traumatic injuries or electrical simulators to accelerate bone growth. Additional classes of devices can even be used for programmed drug delivery, Rogers said.

Such envisioned uses are all best satisfied by devices that provide robust, reliable, high performance operation, but only for a finite period of time dictated, for example, by the healing process—they are not only biologically compatible, but they are biologically punctual, performing when and as the body needs them.

After their function has been fulfilled, they disappear through resorption into the body, thereby eliminating unnecessary device load, without the need for additional surgical operations. In terms of consumer electronics, the technology holds promise for reducing the environmental footprint of the next generation of “green” devices.


The symposium takes place from November 9-14 at the Baltimore Convention Center, which is located at One West Pratt Street in Baltimore, Maryland, 21201. The headquarters hotel is the Sheraton Inner Harbor at 300 South Charles Street in Baltimore, Maryland, 21201.


Main symposium website:
Technical Program:
Media Center:
Baltimore Convention Center:
Sheraton Inner Harbor:


The AVS Pressroom will be located in the Charles Street Lobby Staff Office of the Baltimore Convention Center. Pressroom hours are Monday-Thursday, 8:00 a.m. - 5:00 p.m. Your press badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The press badge will also admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer at 5:30 p.m. ET on Monday in Ballroom III of the Baltimore Convention Center and the Awards Ceremony and Reception at 6:30 p.m. ET on Wednesday night in Ballroom I-II of the Baltimore Convention Center.

To request free press registration, please contact Jason Socrates Bardi: and Della Miller


Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities. See:

Contact Information

Jason Socrates Bardi
American Institute of Physics

Jason Socrates Bardi | Eurek Alert!

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>