Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of pure organic substances exhibiting the quantum spin liquid state

23.06.2014

Researchers at the University of Tokyo and Japan's National Institute for Materials Science have discovered pure organic substances exhibiting the quantum spin liquid state.

Water loses kinetic energy as it is cooled, and when water molecules become unable to move, water becomes solid (ice). Similarly, electron spins in magnetic materials normally align and form a solid state at low temperature.


Figure 1: (a) An arrangement of dimerized molecules of κ-H3(Cat- EDT-TTF)2 on the 2-D plane, b-c. (b) An anisotropic 2-D triangular lattice made of spin-1/2 molecular dimers. Antiferromagnetically coupled spins normally align in the opposite direction to one another. On a triangular lattice, when two spins (red and blue arrows) align antiparallel, the third spin cannot decide a direction either up or down (and its energy became unstable). This frustration effect restricts spins from formation of an ordered state. (c) 2-D molecular layers bonded by hydrogen atoms.

Recent theoretical studies suggest that spins on a triangular lattice maintain their liquid state (quantum spin liquid state) even at an extremely low temperature.

However, a substantial understanding of this phenomenon, such as whether the quantum spin liquid state really exists, and if it does exist, what kind of spin state it is, has not yet been obtained.

To clarify these matters, efforts have been made over many years in the quest for quantum spin liquid substances.

A group of researchers at the University of Tokyo's Institute for Solid State Physics, led by Professor Hatsumi Mori, project researcher Takayuki Isono (currently a NIMS postdoctoral researcher), and research associate Akira Ueda, were engaged in searching for hydrogen-bonded single-component pure organic semiconductors.

In this process, in partnership with another research group led by Unit Director Shinya Uji at the Superconducting Properties Unit of the National Institute for Materials Science, they discovered that electron spins in a pure organic substance, κ-H3(Cat- EDT-TTF)*2, were in the quantum spin liquid state.

A detailed understanding of quantum spin liquid is expected to present a new direction in the course of research into the superconducting mechanism of high-temperature superconductors and the development of new data storage and communication technology.

*Cat- EDT-TTF: catechol-fused ethylenedithiotetrathiafulvalene

Mikiko Tanifuji | Research SEA News
Further information:
http://www.nims.go.jp/eng/news/press/2014/06/p201406161.html
http://www.researchsea.com

Further reports about: NIMS Superconducting Water phenomenon semiconductors substances superconductors temperature

More articles from Materials Sciences:

nachricht Borophene shines alone as 2-D plasmonic material
21.11.2017 | Rice University

nachricht Quantum dots amplify light with electrical pumping
21.11.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>