Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a New Photonic Crystal where Light Propagates through the Surface without being Scattered

23.09.2015

An international research team elucidated a new principle whereby electromagnetic waves including light propagate on the surface of a photonic crystal without being scattered.

Achievable Even by Silicone Alone; Developments of New Functions through Integration with Semiconductor Electronics


Copyright : NIMS

Xiao Hu, Principal Investigator of the International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), and Long-Hua Wu, NIMS Junior Researcher, elucidated a new principle whereby electromagnetic waves including light propagate on the surface in a photonic crystal without being scattered.

By merely slightly adjusting positions of insulator or semiconductor cylinders (nanorods) in a honeycomb lattice, electromagnetic waves can propagate without being scattered even at corners of crystal or by defects. Since this property can be achieved even by a semiconductor, such as silicone, alone, developments of new functions are expected via integrating information processing functions achieved by the well-established semiconductor electronics and the excellent propagation property of electromagnetic waves.

In recent years, active studies have been conducted on materials with topological properties where unique properties appear on surfaces of materials. Suppressions of scattering of light by defects in conventional photonic crystals is also expected in topological photonic states. However, special materials were required to create topological photonic crystals.

These researchers discovered a new principle to realize a topological photonic crystal by merely adjusting positions of insulator or semiconductor nanorods in a honeycomb lattice, without using any complicated material or structure. When hexagonal clusters are formed by adjusting positions of clinders, electromagnetic modes carrying on spin, a feature conventionally specific to electrons, appear.

As a result, it was theoretically clarified that a photonic crystal exhibits topological properties when the separation between hexagonal clusters is narrowed from that of the honeycomb lattice.

Since the nanorods can be formed by silicone, developments of new functions and devices are expected through integration with existing silicon-based electronics.

This research was partially supported by “Topological Quantum Phenomena in Condensed Matter with Broken Symmetries,” Grant-in-Aid for Scientific Research on Innovative Areas, Ministry of Education, Culture, Sports, Science and Technology. The research results were published in Physical Review Letters, a journal of the American Physical Society, online on June 3, 2015 (local time).

[Image Above: Schematic of photonic crystals consisting of cylinders in a honeycomb lattice viewed from above. Photonic crystals obtained by dividing the nearest neighboring cylinders into hexagonal clusters, and widening (left) or narrowing (right) the separation between hexagonal clusters from the original honeycomb lattice (middle), while keeping the shape and size of hexagons.

Below: Relationship between the wave number and frequency of the photonic crystal in each case. Here, a0 denotes the distance between the hexagonal clusters as measured from their center, and R denotes the length of one side of the hexagon.]


Associated links
Original press release from NIMS

Mikiko Tanifuji | ResearchSea
Further information:
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>