Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of New Colossal Magnetoresistance Mechanism

29.08.2012
A research group including the NIMS Superconducting Properties Unit and others, in joint work with the University of Fukui, discovered a new material, NaCr2O4, which was developed by ultra-high pressure synthesis and displays a novel type of colossal magnetoresistance effect.
A research group of Dr. Hiroya Sakurai, Senior Researcher, Dr. Taras Kolodiazhnyi, Senior Researcher, and Dr. Yuichi Michiue, Principal Researcher of the Superconducting Properties Unit, National Institute for Materials Science (NIMS, President: Sukekatsu Ushioda), Dr. Eiji Muromachi, Vice President of NIMS, and others, in joint work with Professor Hikomitsu Kikuchi and Mr. Yuichi Tanabe of the University of Fukui, discovered a new material, NaCr2O4, which displays a novel type of colossal magnetoresistance effect. The new material was developed by ultra-high pressure synthesis.

Materials in which electrical resistance changes by an order of magnitude when a magnetic field is applied are called colossal magnetoresistance (CMR) materials. Virtually all known CMR materials are oxides of manganese, and their CMR mechanism also depends on a special ferromagnetic-metallic phase of manganese ions. However, new CMR mechanisms and material search guidelines which do not rely on manganese oxides have been demanded.

In this research, a new material, NaCr2O4, was developed by ultra-high pressure synthesis, focusing on the following two points: (1) Calcium ferrite structures have both a 1-dimensional crystal structure and a structure which displays magnetic frustration, and (2) oxides with tetravalent ions of Cr have a special electronic state.

It was found that a CMR effect occurs in NaCr2O4, which is not a ferromagnetic metal, but rather, is an antiferromagnetic semiconductor. Although the CMR effect appears over a wide temperature range, i.e., the entire temperature range below the magnetic transition temperature, this is a CMR effect with a new mechanism, which has the novel feature of not displaying history effects with respect to temperature or the magnetic field.

This result has important implications for the search for CMR materials, as it is also necessary to consider the antiferromagnetic semiconductors, which had seemed unrelated to the CMR effect until now. The new mechanism proposed as a result of this research has the potential to become a new material search guideline, as the CMR effect can be considered to occur in the diverse structures of various transition metal compounds.

This research was carried out with support from the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) Program, Grant-in-Aid for Basic Research A (22246083), Basic Research C (21560025), of the Japan Science and Technology Agency and Designated Research Regions (19052005) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). This achievement has been published in Angewandte Chemie International Edition vol. 51 (2012) 6653-6656.

For more detail
Hiroya Sakurai
Senior Researcher, Superconducting Properties Unit, NIMS
TEL:+81-29-860-4771
E-Mail: SAKURAI.Hiroya=nims.go.jp
(Please change "=" to "@")

Prof. Hikomitsu Kikuchi
Graduate School of Engineering, University of Fukui
TEL:+81-776-27-8031
E-Mail: kikuchi=apphy.u-fukui.ac.jp
(Please change "=" to "@")

For general inquiry
NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail: pr@nims.go.jp

University of Fukui
PR Center
TEL:+81-776-27-9733
FAX:+81-776-27-8518

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2012/06/p201206190.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>