Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of New Colossal Magnetoresistance Mechanism

A research group including the NIMS Superconducting Properties Unit and others, in joint work with the University of Fukui, discovered a new material, NaCr2O4, which was developed by ultra-high pressure synthesis and displays a novel type of colossal magnetoresistance effect.
A research group of Dr. Hiroya Sakurai, Senior Researcher, Dr. Taras Kolodiazhnyi, Senior Researcher, and Dr. Yuichi Michiue, Principal Researcher of the Superconducting Properties Unit, National Institute for Materials Science (NIMS, President: Sukekatsu Ushioda), Dr. Eiji Muromachi, Vice President of NIMS, and others, in joint work with Professor Hikomitsu Kikuchi and Mr. Yuichi Tanabe of the University of Fukui, discovered a new material, NaCr2O4, which displays a novel type of colossal magnetoresistance effect. The new material was developed by ultra-high pressure synthesis.

Materials in which electrical resistance changes by an order of magnitude when a magnetic field is applied are called colossal magnetoresistance (CMR) materials. Virtually all known CMR materials are oxides of manganese, and their CMR mechanism also depends on a special ferromagnetic-metallic phase of manganese ions. However, new CMR mechanisms and material search guidelines which do not rely on manganese oxides have been demanded.

In this research, a new material, NaCr2O4, was developed by ultra-high pressure synthesis, focusing on the following two points: (1) Calcium ferrite structures have both a 1-dimensional crystal structure and a structure which displays magnetic frustration, and (2) oxides with tetravalent ions of Cr have a special electronic state.

It was found that a CMR effect occurs in NaCr2O4, which is not a ferromagnetic metal, but rather, is an antiferromagnetic semiconductor. Although the CMR effect appears over a wide temperature range, i.e., the entire temperature range below the magnetic transition temperature, this is a CMR effect with a new mechanism, which has the novel feature of not displaying history effects with respect to temperature or the magnetic field.

This result has important implications for the search for CMR materials, as it is also necessary to consider the antiferromagnetic semiconductors, which had seemed unrelated to the CMR effect until now. The new mechanism proposed as a result of this research has the potential to become a new material search guideline, as the CMR effect can be considered to occur in the diverse structures of various transition metal compounds.

This research was carried out with support from the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) Program, Grant-in-Aid for Basic Research A (22246083), Basic Research C (21560025), of the Japan Science and Technology Agency and Designated Research Regions (19052005) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). This achievement has been published in Angewandte Chemie International Edition vol. 51 (2012) 6653-6656.

For more detail
Hiroya Sakurai
Senior Researcher, Superconducting Properties Unit, NIMS
(Please change "=" to "@")

Prof. Hikomitsu Kikuchi
Graduate School of Engineering, University of Fukui
(Please change "=" to "@")

For general inquiry
NIMS Public Relations Office

University of Fukui
PR Center

Mikiko Tanifuji | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>