Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The (re-)discovery of a versatile, multifunctional material

28.03.2012
For 75 years Empa has been conducting research on all aspects relating to wood.

Beginning with an investigation into the properties of various types of indigenous woods, today this has grown into a research area with many branches – from fundamental research on the structure of wood to chemically or biologically modified woods, novel wood fiber products and surface technologies.

Empa scientists examine each of the material’s properties in minute detail and use these results to develop next-generation techniques of utilizing wood such as in the areas of acoustic insulation and structural engineering.

In the beginning the focus was concentrated on research aimed at encouraging the exploitation of indigenous types of wood, according to Klaus Richter, who headed Empa's Wood Laboratory for many years and who now teaches wood science at the Technical University, Munich. In the early days, for example, new processes for the pressure-impregnation of telegraph poles were developed which significantly increased their useful life. Over time the field of research broadened, but the aim has remained the same, explains Tanja Zimmermann, Richter’s successor: developing innovative wood products which, in collaboration with industrial partners, can be economically exploited. This aspect is reflected in the new name of the laboratory, "Applied Wood Research".

Basic research and applied development at the same time
Exactly how this works in detail was explained by Ingo Burgert, professor of wood based materials at the ETH Zürich and simultaneously head of the «Bio-inspired Wood Materials» working group. Burgert is investigating the phenomenon of heartwood, which develops in trees after a certain age and frequently gives the material an enhanced durability. The professor is investigating questions such as whether it is possible to chemically modify wood after it has been harvested to make it harder and longer lived. Can one retrospectively fill wood with functional nanoparticles? Is it possible to construct composite materials of wood and carbon fiber? Francis Schwarze and Mark Schubert are also studying ways of altering the characteristics of wood in specific ways for particular applications, for example harnessing fungi which decompose wood to improve the tonal qualities for use in musical instruments, or utilizing enzymes to lend wooden surfaces completely new characteristics. This could perhaps make a wood surface resistant to fungus and bacteria. Another possibility is "self-adhesive" wooden chips for making fiberboard.

A range of interesting substances and materials can also be isolated from wood, one such being nanofibrillated cellulose (NFC), an extremely versatile material. Zimmermann's team played (and continues to play) a central role in the further development of this material, which can be used in fiber reinforced adhesives and lacquers, and to make intervertebral disc implants. Airtight packaging for the food industry is another application for NFC's – they are compostable and when burnt emit practically no pollutants.

From small to large
A more classical application is the use of wood as a construction material. René Steiger and Robert Widmann, two wood specialists from Empa's Engineering Structures Laboratory, have been investigating load-bearing structures made of wood such as glue-laminated timber beams, which they destroy by applying extreme loads and then repair using carbon fiber mats affixed with adhesive, for example. The building industry profits from these optimized repair techniques. Wood is of course inflammable, but how quickly does it burn and how long does it maintain its load-bearing abilities? What happens when wood burns from the inside? These are questions which Empa investigates in its Fire Laboratory. For instance, just in front of the flame front a large quantity of water vapor is forced through the wood.

As a result of further advances in the fire safety regulations in Switzerland, multistoried wooden buildings have been permitted in the country for several years now. This development raises new questions, though: how good is the acoustic installation in a wooden-shelled building? A team led by Kurt Eggenschwiler, head of Empa's Acoustics/Noise Control Laboratory has been studying this topic since 2011 with the help of a special lightweight testing structure which allows the scientists to investigate and evaluate the acoustic qualities of lightweight structures made of wood and composite materials.

Wood research–Empa's role in Switzerland
The symposium ended with a series of guest lectures, underscoring the important role which Empa plays in the Swiss wood industry. Martin Riediker of the Innovation Promotion Agency (CTI) explained the National Research Program "Resource Wood" project (NFP 66), initiated in 2010. The aim of this initiative is to better exploit ageing Swiss timber resources and to find new applications for wood. Christoph Starck of Lignum, the umbrella organization for the Swiss forestry and lumber industry, described how the results of wood research are applied in practice in the building industry. From Empa researcher to carpenter – everyone involved in dealing with wood is working towards the same goal, namely utilizing a sustainable, regrowable raw material in an optimal manner.

Dr. Tanja Zimmermann | EurekAlert!
Further information:
http://www.empa.ch

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>