Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Direct Measurement of Electron Spins in a Topological Insulator

29.06.2011
A Remarkable Step toward a Next-Generation Energy-Conservation Device

*Note: This news was first mentioned in the June 2011 issue of Nanotech Japan Update*

Tohoku University, Osaka University and Japan Science and Technology Agency (JST) announced on May 17, 2011 that researchers of Tohoku University and Osaka University jointly succeeded in di-rectly observing electron spins in a topological insulator. The work has been supported by JST and published in Physical Review Letters with the lead author Seigo Souma, Assistant Professor of Tohoku University.

The charge of electron has been a basic carrier of information. However, another entity of electron, i.e. spin, is also expected to be an information carrier in the next generation systems. Topological insu-lator is a promising material recently recognized for the working spin, or a material for spintronics since its "edge" (e.g. surface on a bulk material) serves as a conducting path depending on the spin pola-rization. Direct observation of spin states will be a key step to control electron spins in the material.

Researchers have performed spin-resolved photoemission spectroscopy of a topological insulator Bi2Te3 and present the first direct evidence for the existence of the out-of-plane spin component on the surface state. The magnitude of the out-of-plane spin polarization reaches maximally 25% of the in-plane counterpart. Its existence is presumed to come from the hexagonally deformed Fermi surface in momentum space, since no out-of-plane spin component is observed in another topological insulator TlBiSe2 with circular Fermi surface.

Although a problem remains in the quantitative difference from theoretical prediction, researchers stated that the direct measurement of electron spins is a remarkable step toward a next-generation energy conservation device.

Journal information

S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, Kouji Segawa, and Yoichi Ando, "Direct measurement of the out-of-plane spin texture in the Dirac-cone surface state of a topological insulator", Physical Review Letters, Vol. 21, No. 12, pp. 216803 (2011) [4 pages] Published May 25, 2011

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.mext.go.jp/english/modules/news/article.php?a_id=749
http://www.researchsea.com

Further reports about: Electron Insulator Spin Topological electron spin measurement topological insulator

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>