Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Direct Measurement of Electron Spins in a Topological Insulator

29.06.2011
A Remarkable Step toward a Next-Generation Energy-Conservation Device

*Note: This news was first mentioned in the June 2011 issue of Nanotech Japan Update*

Tohoku University, Osaka University and Japan Science and Technology Agency (JST) announced on May 17, 2011 that researchers of Tohoku University and Osaka University jointly succeeded in di-rectly observing electron spins in a topological insulator. The work has been supported by JST and published in Physical Review Letters with the lead author Seigo Souma, Assistant Professor of Tohoku University.

The charge of electron has been a basic carrier of information. However, another entity of electron, i.e. spin, is also expected to be an information carrier in the next generation systems. Topological insu-lator is a promising material recently recognized for the working spin, or a material for spintronics since its "edge" (e.g. surface on a bulk material) serves as a conducting path depending on the spin pola-rization. Direct observation of spin states will be a key step to control electron spins in the material.

Researchers have performed spin-resolved photoemission spectroscopy of a topological insulator Bi2Te3 and present the first direct evidence for the existence of the out-of-plane spin component on the surface state. The magnitude of the out-of-plane spin polarization reaches maximally 25% of the in-plane counterpart. Its existence is presumed to come from the hexagonally deformed Fermi surface in momentum space, since no out-of-plane spin component is observed in another topological insulator TlBiSe2 with circular Fermi surface.

Although a problem remains in the quantitative difference from theoretical prediction, researchers stated that the direct measurement of electron spins is a remarkable step toward a next-generation energy conservation device.

Journal information

S. Souma, K. Kosaka, T. Sato, M. Komatsu, A. Takayama, T. Takahashi, M. Kriener, Kouji Segawa, and Yoichi Ando, "Direct measurement of the out-of-plane spin texture in the Dirac-cone surface state of a topological insulator", Physical Review Letters, Vol. 21, No. 12, pp. 216803 (2011) [4 pages] Published May 25, 2011

Mikiko Tanifuji | Research asia research news
Further information:
http://nanonet.mext.go.jp/english/modules/news/article.php?a_id=749
http://www.researchsea.com

Further reports about: Electron Insulator Spin Topological electron spin measurement topological insulator

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>