Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamonds in the crush

14.08.2014

Theoretical simulations reveal how nanoscale lubricating systems can ease friction between surfaces cMain Contentoated with diamond-like carbon

Diamond-like-carbon (DLC) coatings are an innovative technology, exhibiting the twin properties of mechanical toughness and ultralow friction. These features, which are desirable in abrasive environments, have led to the widespread adoption of DLC films in microelectromechanical systems, such as hard disk drives.


Device longevity can be improved through use of computer models that optimize the friction properties of diamond-like coatings used in hard disk drives.

© Janka Dharmasena/iStock/Thinkstock

But because these coatings contain amorphous carbon atoms that produce rough, nanoscale textures, it is difficult to optimize their friction properties using classical theories designed for macroscopic objects.

By performing atom-level simulations of nanoscale friction, Ling Dai and co-workers from the A*STAR Institute of High Performance Computing in Singapore have now uncovered critical clues for designing better systems to lubricate and protect DLC coatings (1).

Perfluoropolyether (PFPE) is a Teflon-like polymer that is commonly sandwiched between DLC-coated substrates to reduce friction and protect against damage. Understanding the friction mechanisms between these ultrathin films is tricky; these materials have contrasting hard and soft mechanical properties, and the sandwich arrangement obscures any direct observation of atomic structure and activity.

To better understand how nanoscale lubrication works in microdevices, the researchers constructed an atomic DLC–PFPE–DLC triple layer using a three-dimensional computer modeling program. They set one DLC slab as a substrate and the other as a ‘slider’.

They then used molecular dynamics techniques to simulate how the lube film responds when the slider moves. However, it was challenging to describe the atomic interactions in this complex material, and so Dai’s team developed hybrid computations that combined several potential energy expressions to replicate the many-body forces in this system.

Simulating frictional motions at different speeds and PFPE film thicknesses revealed that the lubricating film behaves as a solid — the polymer retained its shape without deforming from internal shearing. However, the lubricating film displayed two distinct and competitive modes of motion at an interface: a ‘stick–slide’ action that produced jerky, stepwise displacements, and a continuous motion that caused the film to slide with fluctuating velocities.

The team’s analysis showed that these two types of motions switched on or off depending on adhesion factors, such as thermal vibrations and the interfacial roughness.

After mapping the local friction forces along the sliding interfaces, the researchers discovered a way to link the law describing macroscopic friction to the nanoscale using a simple mathematical modification — a finding with practical importance for the surface engineering of DLC coatings.

“Because our model closely resembles the materials used in industrial applications, this work can serve as a guide for future experimental developments,” says Dai.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Reference

(1) Dai, L., Sorkin, V., Sha, Z. D., Pei, Q. X., Branico, P. S. & Zhang, Y. W. Molecular dynamics simulations on the frictional behavior of a perfluoropolyether film sandwiched between diamond-like-carbon coatings. Langmuir 30, 1573–1579 (2014).

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7016
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Diamonds get more beautiful with laser lamps
16.04.2015 | Heraeus Noblelight GmbH

nachricht X-ray study images structural damage in lithium-ion batteries
15.04.2015 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>