Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diamonds in the crush


Theoretical simulations reveal how nanoscale lubricating systems can ease friction between surfaces cMain Contentoated with diamond-like carbon

Diamond-like-carbon (DLC) coatings are an innovative technology, exhibiting the twin properties of mechanical toughness and ultralow friction. These features, which are desirable in abrasive environments, have led to the widespread adoption of DLC films in microelectromechanical systems, such as hard disk drives.

Device longevity can be improved through use of computer models that optimize the friction properties of diamond-like coatings used in hard disk drives.

© Janka Dharmasena/iStock/Thinkstock

But because these coatings contain amorphous carbon atoms that produce rough, nanoscale textures, it is difficult to optimize their friction properties using classical theories designed for macroscopic objects.

By performing atom-level simulations of nanoscale friction, Ling Dai and co-workers from the A*STAR Institute of High Performance Computing in Singapore have now uncovered critical clues for designing better systems to lubricate and protect DLC coatings (1).

Perfluoropolyether (PFPE) is a Teflon-like polymer that is commonly sandwiched between DLC-coated substrates to reduce friction and protect against damage. Understanding the friction mechanisms between these ultrathin films is tricky; these materials have contrasting hard and soft mechanical properties, and the sandwich arrangement obscures any direct observation of atomic structure and activity.

To better understand how nanoscale lubrication works in microdevices, the researchers constructed an atomic DLC–PFPE–DLC triple layer using a three-dimensional computer modeling program. They set one DLC slab as a substrate and the other as a ‘slider’.

They then used molecular dynamics techniques to simulate how the lube film responds when the slider moves. However, it was challenging to describe the atomic interactions in this complex material, and so Dai’s team developed hybrid computations that combined several potential energy expressions to replicate the many-body forces in this system.

Simulating frictional motions at different speeds and PFPE film thicknesses revealed that the lubricating film behaves as a solid — the polymer retained its shape without deforming from internal shearing. However, the lubricating film displayed two distinct and competitive modes of motion at an interface: a ‘stick–slide’ action that produced jerky, stepwise displacements, and a continuous motion that caused the film to slide with fluctuating velocities.

The team’s analysis showed that these two types of motions switched on or off depending on adhesion factors, such as thermal vibrations and the interfacial roughness.

After mapping the local friction forces along the sliding interfaces, the researchers discovered a way to link the law describing macroscopic friction to the nanoscale using a simple mathematical modification — a finding with practical importance for the surface engineering of DLC coatings.

“Because our model closely resembles the materials used in industrial applications, this work can serve as a guide for future experimental developments,” says Dai.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing


(1) Dai, L., Sorkin, V., Sha, Z. D., Pei, Q. X., Branico, P. S. & Zhang, Y. W. Molecular dynamics simulations on the frictional behavior of a perfluoropolyether film sandwiched between diamond-like-carbon coatings. Langmuir 30, 1573–1579 (2014).

A*STAR Research | Research SEA News
Further information:

More articles from Materials Sciences:

nachricht New Artificial Cells Mimic Nature’s Tiny Reactors
09.10.2015 | Department of Energy, Office of Science

nachricht Reliable in-line inspections of high-strength automotive body parts within seconds
09.10.2015 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>