Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond provides technical progress

03.07.2015

Diamond should help to produce fuels and chemicals from carbon dioxide and light. This is the goal of a new research consortium receiving around EUR 3.9 million in funding from the European Union. It is coordinated by Professor Anke Krueger at the University of Würzburg.

To date only nature has been able to create organic substances from sunlight and the gas carbon dioxide, which is available in abundance in the Earth’s atmosphere – doing so in a simple water environment.


It might be possible with the help of diamond to turn carbon dioxide and sunlight into valuable raw materials, such as the gases methane (CH4) and carbon monoxide (CO) or the alcohol methanol.

Image: Anke Krueger

The science world is also keen to master this skill in order to use it to produce fine chemicals or fuels for cars and energy generation, for example. This might work with new technologies based on tailor-made diamond materials.

This development activity will be performed in the new international research consortium DIACAT coordinated by Professor Anke Krueger of the Institute for Organic Chemistry at the University of Würzburg. DIACAT stands for “Diamond materials for the photocatalytic conversion of CO2 to fine chemicals and fuels using visible light”.

The European Union (EU) is supplying the consortium with around EUR 3.9 million in funding over the next four years; a good EUR 615,000 of this will go to the University of Würzburg.

The EU approved the project in its Horizon 2020 program. This invited “novel ideas for radically new technologies”. A total of 670 project proposals were submitted, only 24 of which received a funding commitment. DIACAT is the only project among them that is coordinated by an institution in Germany. It starts on 1 July 2015.

Diamond: What makes it so extraordinary

Diamond consists of pure carbon and is a very unique material. It is not just its proverbial hardness and its jewelry qualities that make it a material of the future. “There is so much more to diamond,” explains the Würzburg chemistry professor. Depending on the manufacturing process, you can equip it with other elements, for example, to create a semiconductor from the perfect electrical insulator.

Diamond also possesses exceptional electronic properties. Thanks to these, it is possible to emit electrons from the surface of a diamond electrode with the help of light. These electrons can then be used in water, for example, for chemical reactions with different starting materials.

Goal: To replace UV light with sunlight

Even the mere possibility of producing electrons dissolved in water is already special. “Yet, the high energy of these electrons also enables reactions that would not be at all possible using other semiconductor materials such as silicon, silicon carbide, or gallium arsenide,” explains Anke Krueger. These reactions include returning carbon dioxide to the chemical cycle.

So far, however, the procedure has only worked with ultraviolet light. “Our goal now is to be able to use the visible light of the sun instead and in doing so develop a particularly environmentally friendly technology,” says the chemist. “If we are successful, this will make a major contribution to generating fuels and chemicals in a manner that conserves resources and it may propel technological change.”

DIACAT: The institutions involved

Work toward this demanding goal will be carried out in DIACAT from July 2015 onwards. The project combines the expertise of six universities and research institutes in the field of diamond materials and electrochemistry.

Alongside Anke Krueger’s team at the University of Würzburg, the parties also involved are the Fraunhofer Institute for Applied Solid State Physics in Freiburg (Germany), CEA Saclay (France), Oxford University (UK), the University of Uppsala (Sweden), and the Helmholtz Centre Berlin for Materials and Energy (Germany). The final member of the consortium is the German company Ionic Liquids Technologies GmbH (Heilbronn), a specialist in ionic liquids. Administrative support is provided by the agency GABO:mi in Munich.

Contact

Prof. Dr. Anke Krueger, Institute for Organic Chemistry at the University of Würzburg
T +49 (0)931 31-85334, anke.krueger@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

nachricht Wonder material? Novel nanotube structure strengthens thin films for flexible electronics
24.04.2017 | University of Illinois College of Engineering

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>