Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond provides technical progress

03.07.2015

Diamond should help to produce fuels and chemicals from carbon dioxide and light. This is the goal of a new research consortium receiving around EUR 3.9 million in funding from the European Union. It is coordinated by Professor Anke Krueger at the University of Würzburg.

To date only nature has been able to create organic substances from sunlight and the gas carbon dioxide, which is available in abundance in the Earth’s atmosphere – doing so in a simple water environment.


It might be possible with the help of diamond to turn carbon dioxide and sunlight into valuable raw materials, such as the gases methane (CH4) and carbon monoxide (CO) or the alcohol methanol.

Image: Anke Krueger

The science world is also keen to master this skill in order to use it to produce fine chemicals or fuels for cars and energy generation, for example. This might work with new technologies based on tailor-made diamond materials.

This development activity will be performed in the new international research consortium DIACAT coordinated by Professor Anke Krueger of the Institute for Organic Chemistry at the University of Würzburg. DIACAT stands for “Diamond materials for the photocatalytic conversion of CO2 to fine chemicals and fuels using visible light”.

The European Union (EU) is supplying the consortium with around EUR 3.9 million in funding over the next four years; a good EUR 615,000 of this will go to the University of Würzburg.

The EU approved the project in its Horizon 2020 program. This invited “novel ideas for radically new technologies”. A total of 670 project proposals were submitted, only 24 of which received a funding commitment. DIACAT is the only project among them that is coordinated by an institution in Germany. It starts on 1 July 2015.

Diamond: What makes it so extraordinary

Diamond consists of pure carbon and is a very unique material. It is not just its proverbial hardness and its jewelry qualities that make it a material of the future. “There is so much more to diamond,” explains the Würzburg chemistry professor. Depending on the manufacturing process, you can equip it with other elements, for example, to create a semiconductor from the perfect electrical insulator.

Diamond also possesses exceptional electronic properties. Thanks to these, it is possible to emit electrons from the surface of a diamond electrode with the help of light. These electrons can then be used in water, for example, for chemical reactions with different starting materials.

Goal: To replace UV light with sunlight

Even the mere possibility of producing electrons dissolved in water is already special. “Yet, the high energy of these electrons also enables reactions that would not be at all possible using other semiconductor materials such as silicon, silicon carbide, or gallium arsenide,” explains Anke Krueger. These reactions include returning carbon dioxide to the chemical cycle.

So far, however, the procedure has only worked with ultraviolet light. “Our goal now is to be able to use the visible light of the sun instead and in doing so develop a particularly environmentally friendly technology,” says the chemist. “If we are successful, this will make a major contribution to generating fuels and chemicals in a manner that conserves resources and it may propel technological change.”

DIACAT: The institutions involved

Work toward this demanding goal will be carried out in DIACAT from July 2015 onwards. The project combines the expertise of six universities and research institutes in the field of diamond materials and electrochemistry.

Alongside Anke Krueger’s team at the University of Würzburg, the parties also involved are the Fraunhofer Institute for Applied Solid State Physics in Freiburg (Germany), CEA Saclay (France), Oxford University (UK), the University of Uppsala (Sweden), and the Helmholtz Centre Berlin for Materials and Energy (Germany). The final member of the consortium is the German company Ionic Liquids Technologies GmbH (Heilbronn), a specialist in ionic liquids. Administrative support is provided by the agency GABO:mi in Munich.

Contact

Prof. Dr. Anke Krueger, Institute for Organic Chemistry at the University of Würzburg
T +49 (0)931 31-85334, anke.krueger@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>