Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diamond 'flaws' pave way for nanoscale MRI

25.11.2013
By exploiting flaws in miniscule diamond fragments, researchers say they have achieved enough coherence of the magnetic moment inherent in these defects to harness their potential for precise quantum sensors in a material that is 'biocompatible'.

Nanoscopic thermal and magnetic field detectors - which can be inserted into living cells - could enhance our understanding of everything from chemical reactions within single cells to signalling in neural networks and the origin of magnetism in novel materials.


This image shows nanodiamonds.

Credit: H.S Knowles and C.H.H Schulte

Atomic impurities in natural diamond structure give rise to the colour seen in rare and coveted pink, blue and yellow diamond. But these impurities are also a major research focus in emerging areas of quantum physics.

One such defect, the Nitrogen-vacancy Centre (NVC), consists of a gap in the crystal lattice next to a nitrogen atom. This system tightly traps electrons whose spin states can be manipulated with extreme precision.

Electron coherence - the extent to which the spins of these particles can sustain their quantum mechanical properties - has been achieved to high levels in the NVCs of large 'bulk' diamonds, with coherence times of an entire second in certain conditions - the longest yet seen in any solid material.

However in nanodiamonds - nanometer sized crystals that can be produced by milling conventional diamond - any acceptable degree of coherence has, until now, proved elusive.

Nanodiamonds offer the potential for both extraordinarily precise resolution, as they can be positioned at the nano-scale, and biocompatibility - as they have can be inserted into living cells. But without high levels of coherence in their NVCs to carry information, these unique nanodiamond benefits cannot be utilised.

By observing the spin dynamics in nanodiamond NVCs, researchers at Cambridge's Cavendish Laboratory, have now identified that it is the concentration of nitrogen impurities that impacts coherence rather than interactions with spins on the crystal surface.

By controlling the dynamics of these nitrogen impurities separately, they have increased NVC coherence times to a record 0.07 milliseconds longer than any previous report, an order of significant magnitude - putting nanodiamonds back in play as an extremely promising material for quantum sensing.

The results are published today in the journal Nature Materials.

"Our results unleash the potential of the smallest magnetic field and temperature detector in the world. Nanodiamond NVCs can sense the change of such features within a few tens of nanometres - no other sensor has ever had this spatial resolution under ambient conditions," said Helena Knowles, a researcher on the study.

"We now have both high spin coherence and spatial resolution, crucial for various quantum technologies."

Dr Dhiren Kara, who also worked on the study, points out that the nanodiamond's biocompatibility can provide non-invasive optical access to magnetic changes within a living cell - essentially the ability to perform MRI and detect, for instance, a cell's reaction to a drug in real time.

"We may also be able to answer some key questions in material science, such as magnetic ordering at the edges of graphene or the origin of magnetism in oxide materials," Kara said.

Dr Mete Atature, director of the research, added: "The pursuit of simultaneous high NVC coherence and high spatial resolution, and the fact that nanodiamonds couldn't deliver on this promise until now, has required researchers to invest in alternative means including advanced nanofabrication techniques, which tends to be both expensive and low-yield."

"The simplest solution - feasible and inexpensive - was in front of us the whole time."

Dr. Mete Atature | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>