Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of High Sensitivity Detection Method for Diluted Ionic Mercury in Water

07.03.2013
A research group at WPI-MANA have discovered that it is possible to detect diluted ionic mercury in water with more than 10 times higher sensitivity than with the conventional spectroscopy method.

A research group of WPI-MANA, including Dr. Chung Vu Hoang (Doctoral Research Fellow) at MANA (International Center for Materials Nanoarchitectonics), NIMS (National Institute for Materials Science, President: Sukekatsu Ushioda), Dr. Tadaaki Nagao, Group Leader of the NIMS Nano-System Photonics Group, Dr. Masakazu Aono, Director-General of MANA, and others discovered that it is possible to detect of ionic mercury, with more than 10 times higher sensitivity than with the conventional spectroscopy method.


Figure: (a) Schematic of the surface coating material (DNA aptamer). Only the ionic mercury is selectively adsorbed; organic molecules are not trapped. (b) Lake Kasumigaura, where the natural water was sampled. (c) Schematic of a nanogap on the gold surface, which was coated with the surface coating material.

Ionic mercury is a harmful substance when dissolved in rivers, lakes, marshes, etc. in even trace amounts. In contrast to the conventional spectroscopic detection method, the infrared spectroscopy detection method was used in detection.

Mercury is a serious environmental pollutant which is hard to control and decontaminate. Its sources range from small scale gold mines, metal refining plants, to combustion of fossil fuels, volcanic activity, and crematoriums. In everyday products, it is emitted from dry cell batteries, fluorescent tubes, thermometers, blood pressure gauges, and so on. As mercury is easily vaporized at room temperature and diffuses rapidly in the atmosphere, it is a ubiquitous pollutant on a global scale.
On January 19, 2013, the United Nations ratified a new Convention on Mercury Control, following multinational negotiations that began on January 13. Because mercury contamination generally accumulates in living organisms and gradually progresses over time, early detection of low concentrations of mercury in environmental water is an important issue.

In this research, the NIMS group developed a method of detecting ionic mercury from water selectively and with high sensitivity by fabricating a gold nanogap structure coated with molecules which shows strong specific adsorption of ionic mercury. Although infrared spectroscopy had been believed to be unsuitable for the measurement of trace amounts of analytes in water, the unnecessary spectrum of water was reduced by using plasmons formed in the nanogaps of the gold, making it possible to apply this method. The NIMS researchers also found that the detection limit of ionic mercury with a standard Fourier transform infrared (FT-IR) spectrometer can be decreased to the ppt (part per trillion) level as a result of the improved sensitivity obtained by plasmon field enhancement in the nanogaps.

Ionic mercury dissolved in water cannot be measured as-is by infrared spectroscopy. However, by selective adsorption by the surface coating material in this work, it was possible to selectively detect ionic mercury and other components when mercury was intentionally dissolved at a concentration on the order of 30ppt in natural water from Lake Kasumigaura. From this research, it was found that mercury contamination of lakes and rivers can be assessed from trace levels using infrared spectroscopy. In the future, this detection method is expected to be developed into simple, precise monitoring techniques. Such techniques are expected for contributing to the detection of other types of environmental pollutions as well as to the industrial waste water treatment.

These research results will be published in the online bulletin of Scientific Reports on February 6, 2013 (Japan time).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/02/p201302060.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>