Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of High Sensitivity Detection Method for Diluted Ionic Mercury in Water

07.03.2013
A research group at WPI-MANA have discovered that it is possible to detect diluted ionic mercury in water with more than 10 times higher sensitivity than with the conventional spectroscopy method.

A research group of WPI-MANA, including Dr. Chung Vu Hoang (Doctoral Research Fellow) at MANA (International Center for Materials Nanoarchitectonics), NIMS (National Institute for Materials Science, President: Sukekatsu Ushioda), Dr. Tadaaki Nagao, Group Leader of the NIMS Nano-System Photonics Group, Dr. Masakazu Aono, Director-General of MANA, and others discovered that it is possible to detect of ionic mercury, with more than 10 times higher sensitivity than with the conventional spectroscopy method.


Figure: (a) Schematic of the surface coating material (DNA aptamer). Only the ionic mercury is selectively adsorbed; organic molecules are not trapped. (b) Lake Kasumigaura, where the natural water was sampled. (c) Schematic of a nanogap on the gold surface, which was coated with the surface coating material.

Ionic mercury is a harmful substance when dissolved in rivers, lakes, marshes, etc. in even trace amounts. In contrast to the conventional spectroscopic detection method, the infrared spectroscopy detection method was used in detection.

Mercury is a serious environmental pollutant which is hard to control and decontaminate. Its sources range from small scale gold mines, metal refining plants, to combustion of fossil fuels, volcanic activity, and crematoriums. In everyday products, it is emitted from dry cell batteries, fluorescent tubes, thermometers, blood pressure gauges, and so on. As mercury is easily vaporized at room temperature and diffuses rapidly in the atmosphere, it is a ubiquitous pollutant on a global scale.
On January 19, 2013, the United Nations ratified a new Convention on Mercury Control, following multinational negotiations that began on January 13. Because mercury contamination generally accumulates in living organisms and gradually progresses over time, early detection of low concentrations of mercury in environmental water is an important issue.

In this research, the NIMS group developed a method of detecting ionic mercury from water selectively and with high sensitivity by fabricating a gold nanogap structure coated with molecules which shows strong specific adsorption of ionic mercury. Although infrared spectroscopy had been believed to be unsuitable for the measurement of trace amounts of analytes in water, the unnecessary spectrum of water was reduced by using plasmons formed in the nanogaps of the gold, making it possible to apply this method. The NIMS researchers also found that the detection limit of ionic mercury with a standard Fourier transform infrared (FT-IR) spectrometer can be decreased to the ppt (part per trillion) level as a result of the improved sensitivity obtained by plasmon field enhancement in the nanogaps.

Ionic mercury dissolved in water cannot be measured as-is by infrared spectroscopy. However, by selective adsorption by the surface coating material in this work, it was possible to selectively detect ionic mercury and other components when mercury was intentionally dissolved at a concentration on the order of 30ppt in natural water from Lake Kasumigaura. From this research, it was found that mercury contamination of lakes and rivers can be assessed from trace levels using infrared spectroscopy. In the future, this detection method is expected to be developed into simple, precise monitoring techniques. Such techniques are expected for contributing to the detection of other types of environmental pollutions as well as to the industrial waste water treatment.

These research results will be published in the online bulletin of Scientific Reports on February 6, 2013 (Japan time).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/02/p201302060.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>