Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of Coating Technique by High Speed Particles with Velocity of 1,000m/s

31.08.2012
The improved process enables formation of high quality titanium alloy coating films, which had been difficult with the conventional technique.
National Institute for Materials Science
Kagoshima University
Plasma Giken Co., Ltd.

A research group in the NIMS High Temperature Materials Unit, in joint work with Kagoshima University and Plasma Giken Co., Ltd., improved the warm spray method, which is a NIMS original coating process, and increased the velocity of the sprayed particles projected on the substrate material to 1,000m/s by achieving a combustion pressure 4 times higher than that in the conventional process. The improved process enables formation of high quality titanium alloy coating films, which had been difficult with the conventional technique.
Background

Coating (formation of a film on a material) is an extremely important technology for modern industry, as it dramatically improves the heat resistance, corrosion resistance, and wear resistance of materials, essentially creating new materials with performance that did not exist in the past. In this work, a research group headed by Dr. Seiji Kuroda, Unit Director of the High Temperature Materials Unit, National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), and Dr. Makoto Watanabe, Senior Researcher, and Dr. Hiroshi Araki, Chief Engineer, of the same unit, in joint research with Associate Professor Hiroshi Katanoda of Kagoshima University (President: Hiroki Yoshida) and a team led by Dr. Naoyuki Ohno, Director of the Engineering Department of Plasma Giken Co., Ltd. (President: Hirotaka Fukanuma), improved the warm spray method, which is a NIMS original coating process, and increased the velocity of the sprayed particles projected on the substrate material to 1,000m/s by achieving a combustion pressure 4 times higher than that in the conventional process. The improved process enables formation of high quality titanium alloy coating films, which had been difficult with the conventional technique.

When solid metal particles impact on a substrate material at high velocity, the particles are deformed to a flat shape, create depressions in the substrate, and are repelled. However, if the impact velocity exceeds a certain value, large shear plastic deformation (shear instability) is generated locally at the interface between the two, oxides and other substances on the surface are removed, and bonding occurs between the particles and the substrate. This technology was discovered in Russia in the 1980s, and a process called cold spraying, which employs this phenomenon, is now attracting attention. NIMS discovered that densification of the film can be promoted by further heating the particles to an appropriate temperature below their melting point, and named this process warm spraying in 2006. NIMS is continuing joint research and development of this technology with Kagoshima University and Plasma Giken Co., Ltd.

In the present research, Associate Prof. Katanoda, who is an expert on compressible gas-dynamics, created the basic design of the device with the aim of achieving a higher particle velocity. Plasma Giken was responsible for the actual design and manufacture of the device, and NIMS carried out the verification experiments. When the average velocity of the sprayed particles was measured by particle image velocimetry, it was found that the velocity of titanium particles with a diameter of 30ƒÊm achieved 1,000m/s under appropriate conditions.

The developed process was applied to a Ti-6Al-4V alloy, which is a type of high strength titanium alloy and is widely used in aircraft engines and similar applications. Under the optimum conditions, it was possible to obtain an alloy film with porosity of less than 1vol% and an oxygen content of 0.25 mass% (content in the raw material powder: 0.15 mass%). These results exceed the results of film forming using helium, which is an expensive working medium, in the cold spray process.

These research results were announced at the 95th Spring National Meeting of Japan Thermal Spray Society held at the Rijyo Kaikan in Hiroshima, Japan.

For more detail

Dr. Seiji Kuroda
High Temperature Materials Unit
Unit Director
TEL:+81-29-859-2444
E-Mail: KURODA.Seiji=nims.go.jp
(Please change "=" to "@")
Dr. Hiroshi Katanoda
Mechanical Engineering
Graduate School of Science and Engineering
Kagoshima University
TEL:+1-850-645-0151i10F30pm`6F30am Japan timej
E-Mail: katanoda=mech.kagoshima-u.ac.jp
(Please change "=" to "@")
Plasma Giken Co., Ltd.
Technical Manager Naoyuki Ohno
TEL: +81-48-577-1225
In Mr. Ohnofs absence, Development Department Sun Po
TEL:+81-48-577-1225
E-Mail: ohno=plasma.co.jp
(Please change "=" to "@")

For general inquiry
NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail:pr@nims.go.jp
Kagoshima University
Public Relations Office
TEL:+81-99-285-7035
FAX:+81-99-285-3854
Plasma Giken Co., Ltd.
Sales Office
TEL:+81-3-3980-9080
FAX:+81-3-3980-9083

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2012/06/p201206140.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>