Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of Coating Technique by High Speed Particles with Velocity of 1,000m/s

31.08.2012
The improved process enables formation of high quality titanium alloy coating films, which had been difficult with the conventional technique.
National Institute for Materials Science
Kagoshima University
Plasma Giken Co., Ltd.

A research group in the NIMS High Temperature Materials Unit, in joint work with Kagoshima University and Plasma Giken Co., Ltd., improved the warm spray method, which is a NIMS original coating process, and increased the velocity of the sprayed particles projected on the substrate material to 1,000m/s by achieving a combustion pressure 4 times higher than that in the conventional process. The improved process enables formation of high quality titanium alloy coating films, which had been difficult with the conventional technique.
Background

Coating (formation of a film on a material) is an extremely important technology for modern industry, as it dramatically improves the heat resistance, corrosion resistance, and wear resistance of materials, essentially creating new materials with performance that did not exist in the past. In this work, a research group headed by Dr. Seiji Kuroda, Unit Director of the High Temperature Materials Unit, National Institute for Materials Science (NIMS; President: Sukekatsu Ushioda), and Dr. Makoto Watanabe, Senior Researcher, and Dr. Hiroshi Araki, Chief Engineer, of the same unit, in joint research with Associate Professor Hiroshi Katanoda of Kagoshima University (President: Hiroki Yoshida) and a team led by Dr. Naoyuki Ohno, Director of the Engineering Department of Plasma Giken Co., Ltd. (President: Hirotaka Fukanuma), improved the warm spray method, which is a NIMS original coating process, and increased the velocity of the sprayed particles projected on the substrate material to 1,000m/s by achieving a combustion pressure 4 times higher than that in the conventional process. The improved process enables formation of high quality titanium alloy coating films, which had been difficult with the conventional technique.

When solid metal particles impact on a substrate material at high velocity, the particles are deformed to a flat shape, create depressions in the substrate, and are repelled. However, if the impact velocity exceeds a certain value, large shear plastic deformation (shear instability) is generated locally at the interface between the two, oxides and other substances on the surface are removed, and bonding occurs between the particles and the substrate. This technology was discovered in Russia in the 1980s, and a process called cold spraying, which employs this phenomenon, is now attracting attention. NIMS discovered that densification of the film can be promoted by further heating the particles to an appropriate temperature below their melting point, and named this process warm spraying in 2006. NIMS is continuing joint research and development of this technology with Kagoshima University and Plasma Giken Co., Ltd.

In the present research, Associate Prof. Katanoda, who is an expert on compressible gas-dynamics, created the basic design of the device with the aim of achieving a higher particle velocity. Plasma Giken was responsible for the actual design and manufacture of the device, and NIMS carried out the verification experiments. When the average velocity of the sprayed particles was measured by particle image velocimetry, it was found that the velocity of titanium particles with a diameter of 30ƒÊm achieved 1,000m/s under appropriate conditions.

The developed process was applied to a Ti-6Al-4V alloy, which is a type of high strength titanium alloy and is widely used in aircraft engines and similar applications. Under the optimum conditions, it was possible to obtain an alloy film with porosity of less than 1vol% and an oxygen content of 0.25 mass% (content in the raw material powder: 0.15 mass%). These results exceed the results of film forming using helium, which is an expensive working medium, in the cold spray process.

These research results were announced at the 95th Spring National Meeting of Japan Thermal Spray Society held at the Rijyo Kaikan in Hiroshima, Japan.

For more detail

Dr. Seiji Kuroda
High Temperature Materials Unit
Unit Director
TEL:+81-29-859-2444
E-Mail: KURODA.Seiji=nims.go.jp
(Please change "=" to "@")
Dr. Hiroshi Katanoda
Mechanical Engineering
Graduate School of Science and Engineering
Kagoshima University
TEL:+1-850-645-0151i10F30pm`6F30am Japan timej
E-Mail: katanoda=mech.kagoshima-u.ac.jp
(Please change "=" to "@")
Plasma Giken Co., Ltd.
Technical Manager Naoyuki Ohno
TEL: +81-48-577-1225
In Mr. Ohnofs absence, Development Department Sun Po
TEL:+81-48-577-1225
E-Mail: ohno=plasma.co.jp
(Please change "=" to "@")

For general inquiry
NIMS Public Relations Office
TEL:+81-29-859-2026
FAX:+81-29-859-2017
E-Mail:pr@nims.go.jp
Kagoshima University
Public Relations Office
TEL:+81-99-285-7035
FAX:+81-99-285-3854
Plasma Giken Co., Ltd.
Sales Office
TEL:+81-3-3980-9080
FAX:+81-3-3980-9083

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2012/06/p201206140.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>