Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of Coating Method that Accelerates Bonding with Bone by 3 Times

27.05.2013
Researchers at the International Center for Materials Nanoarchitectonics (MANA) and Tokyo Medical and Dental University have developed a coating method which accelerates bonding with bone by 3 times.
Dr. Masanori Kikuchi, Group Leader of the Bioceramics Group, International Center for Materials Nanoarchitectonics (MANA) and a research group at Tokyo Medical and Dental University succeeded in developing a coating method which accelerates bonding with bone by 3 times.

Dr. Masanori Kikuchi, Group Leader of the Bioceramics Group, International Center for Materials Nanoarchitectonics (MANA; Director-General: Masakazu Aono), National Institute for Materials Science (President: Sukekatsu Ushioda), and a research group including Masayoshi Uezona (graduate student), Prof. Kazuo Takakuda (Institute of Biomaterials and Bioengineering), Prof. Keiji Moriyama (School of Dentistry, Maxillofacial Orthognathics), and others at Tokyo Medical and Dental University (President; Takashi Ohyama) succeeded in developing a coating which accelerates bonding with bone by 3 times.

Orthodontic subperiosteal devices are superior in terms of low invasiveness, but because bonding with bone on the surface of the bone is necessary, a minimum waiting time of approximately 3 months had been required until medical use was possible, even when coating treatment was performed with hydroxy apatite (HAp).

FigureFPhotographs of tissue preparation during 4 weeks after surgery. In the upper 2 photos, soft tissue (dyed pink) exists between titanium material (black) and bone tissue (dyed brown); however, with the HAp/Col in the lower photos, direct bonding has occurred between the material and the bone.

In order to shorten this time, the device shape was optimized and a new coating method was developed in joint work by NIMS and Tokyo Medical and Dental University. As a result, a coating method which realizes in only 1 month the same bone coverage as after 3 months with the conventional device was established.

Journal information

This research result was published online on April 2, US time, in the Journal of Biomedical Materials Research Part B: Applied Biomaterials.

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/news/press/2013/04/p201304080.html
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>