Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dental fillings without gaps

08.09.2008
Tooth cavities are usually closed with plastic fillings. However, the initially soft plastic shrinks as it hardens.

The tension can cause gaps to appear between the tooth and the filling, encouraging more caries to form. For the first time, researchers have simulated this process.

The patient’s hands are clasped firmly around the armrests as the dentist drills away the caries-stricken sections of the tooth. Once the drilling is over, most toothache sufferers can begin to relax. All the doctor now has to do is to slightly etch the cavity, apply an adhesive film, and fill it with a special type of plastic.

The plastic is soft at first, so that the doctor can easily press it into the cavity. It only solidifies afterwards under the light of a small lamp. However, the material tends to shrink slightly as it hardens, occasionally producing tension that can cause tiny gaps to form between the plastic filling and the tooth. Bits of food can get caught in these gaps and lead to more caries. Manufacturers of filling materials therefore offer a variety of plastics to choose from. But which filling is best suited to which shape of cavity?

This is where dentists have to draw on their experience. “Until now, it has not been possible to establish a theoretical model of the hardening process. The tension occurring in the material always depends on the shape of the cavity, and can vary widely by a factor of up to ten, particularly at the edges,” says Dr.-Ing. Christof Koplin, research assistant at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg. Measurements do not help either, as tension can only be measured selectively. Its precise course of development has never yet been observed.

A new method of simulation now enables tension in dental fillings to be accurately predicted, helping doctors to choose the least tension-prone plastic for each shape of cavity. Dentists can now draw on the results of the IWM to select the best material, and manufacturers can use the simulations to optimize their products. “We theoretically subdivide the dental filling into thousands of small parcels and calculate how each element affects its neighbor.

Experimental parameters are incorporated in the individual elements. We started our laboratory tests by using a standard geometry to find out how each material reacts to the stresses that occur when the volume shrinks, and how the flow capability of the material changes as it hardens,” explains Koplin. The IWM researchers have now successfully simulated the development of tension in dental fillings for various cavity shapes and materials, and more will follow.

Christof Koplin | alfa
Further information:
http://www.iwm.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/09/ResearchNews092008Topic3.jsp

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>