Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers

25.02.2015

Solution enables a battery with both high efficiency & current density

Dendrites - the microscopic, pin-like fibers that cause rechargeable batteries to short circuit - create fire hazards and can limit the ability of batteries to power our smart phones and store renewable energy for a rainy day.


Pacific Northwest National Laboratory has developed a new electrolyte that allows lithium-sulfur, lithium-metal and lithium-air batteries to operate well without growing dendrites, tiny pin-like fibers that short-circuit rechargeable batteries. Shown here are two scanning electron microscope images that illustrate how a traditional electrolyte can cause dendrite growth (a, left), while PNNL's new electrolyte instead causes the growth of smooth nodules that don't short-circuit batteries (b, right).

Credit: PNNL

Now a new electrolyte for lithium batteries that's described in Nature Communications eliminates dendrites while also enabling batteries to be highly efficient and carry a large amount of electric current. Batteries using other dendrite-limiting solutions haven't been able to maintain both high efficiencies and current densities.

"Our new electrolyte helps lithium batteries be more than 99 percent efficient and enables them to carry more than ten times more electric current per area than previous technologies," said physicist Ji-Guang "Jason" Zhang of the Department of Energy's Pacific Northwest National Laboratory. "This new discovery could kick-start the development of powerful and practical next-generation rechargeable batteries such as lithium-sulfur, lithium-air and lithium-metal batteries."

Battery 101

Most of the rechargeable batteries used today are lithium-ion batteries, which have two electrodes: one that's positively charged and contains lithium and another, negative one that's typically made of graphite. Electricity is generated when electrons flow through a wire that connects the two.

To control the electrons, positively charged lithium atoms shuffle from one electrode to the other through another path: the electrolyte solution in which the electrodes sit. But graphite has a low energy storage capacity, limiting the amount of energy a lithium-ion battery can provide smart phones and electric vehicles.

When lithium-based rechargeable batteries were first developed in the 1970s, researchers used lithium for the negative electrode, which is also known as an anode. Lithium was chosen because it has ten times more energy storage capacity than graphite. Problem was, the lithium-carrying electrolyte reacted with the lithium anode. This caused microscopic lithium dendrites to grow and led the early batteries to fail.

Many have tweaked rechargeable batteries over the years in an attempt to resolve the dendrite problem. In the early 1990s, researchers switched to other materials such as graphite for the anode. More recently, scientists have also coated the anode with a protective layer, while others have created electrolyte additives. Some solutions eliminated dendrites, but also resulted in impractical batteries with little power. Other methods only slowed, but didn't stop, the fiber's growth.

Concentrated secret sauce

Thinking today's rechargeable lithium-ion batteries with graphite anodes could be near their peak energy capacity, PNNL is taking another look at the older designs. Zhang and his team sought to develop an electrolyte that worked well in batteries with a high-capacity lithium anode.

They noted others had some success with electrolytes with high salt concentrations and decided to use large amounts of the lithium bis(fluorosulfonyl)imide salt they were considering. To make the electrolyte, they added the salt to a solvent called dimethoxyethane.

The researchers built a circular test cell that was slightly smaller than a quarter. The cell used the new electrolyte and a lithium anode. Instead of growing dendrites, the anode developed a thin, relatively smooth layer of lithium nodules that didn't short-circuit the battery.

After 1,000 repeated charge and discharge cycles, the test cell retained a remarkable 98.4 percent of its initial energy while carrying 4 milliAmps of electrical current per square centimeter of area. They found greater current densities resulted in slightly lower efficiencies. For example, a current density as high as 10 milliAmps per square centimeter, the test cell maintained an efficiency of more than 97 percent. And a test cell carrying just 0.2 milliAmps per square centimeter achieved a whopping 99.1 percent efficiency. Most batteries with lithium anodes operate at a current density of 1 milliAmps per square centimeter or less and fail after less than 300 cycles.

Anode-free battery?

The new electrolyte's remarkably high efficiency could also open the door for an anode-free battery, Zhang noted. The negative electrodes in today's batteries actually consist of thin pieces of metal such as copper that are coated in active materials such as graphite or lithium. The thin metal bases are called current collectors, as they are what keep electrons flowing to power our cell phones.

Active materials have been needed to coat the electrodes because, so far, most electrolytes have been inefficient and continue to consume lithium ions during battery operation. But an electrolyte with more than 99 percent efficiency means there's potential to create a battery that only has a negative current collector, without an active material coating, on the anode side.

"Not needing an anode could lower the cost and size of rechargeable batteries and would also significantly improve the safety of these batteries," Zhang said.

The electrolyte needs to be refined before it's ready for mainstream use, however. Zhang and his colleagues are evaluating various additives to further enhance their electrolyte so a lithium battery using it could achieve more than 99.9 percent efficiency, a level that's needed for commercial adoption. They are also examining which cathode materials would work best in combination with their new electrolyte.

###

To analyze battery material performance, the researchers used advanced techniques such as a scanning electron microscopy and X-ray photoelectron spectroscopy at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science national user facility at PNNL. They also performed molecular dynamic simulations with the help of the Army Research Laboratory. Funding for the project was provided by the Joint Center for Energy Storage Research through DOE's Office of Science.

REFERENCE: Jiangfeng Qian, Wesley A. Henderson, Wu Xu, Priyanka Bhattacharya, Mark Engelhard, Oleg Borodin & Ji-Guang Zhang, "High Rate and Stable Cycling of Lithium Metal Anode," Nature Communications, doi:10.1038/ncomms7362, Feb. 20, 2015, http://www.nature.com/ncomms/2015/150220/ncomms7362/full/ncomms7362.html.

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of more than $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

The Joint Center for Energy Storage Research (JCESR) is a major partnership that integrates researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Led by the U.S. Department of Energy's Argonne National Laboratory, partners include national leaders in science and engineering from academia, the private sector, and national laboratories. Their combined expertise spans the full range of the technology-development pipeline from basic research to prototype development to product engineering to market delivery. Funding for JCESR is provided by the U.S. Department of Energy Office of Science.

Media Contact

Franny White
franny.white@pnnl.gov
509-375-6904

 @PNNLNews

http://www.pnnl.gov/news 

Franny White | EurekAlert!

More articles from Materials Sciences:

nachricht New approach to revolutionize the production of molecular hydrogen
22.05.2017 | Technische Universität Dresden

nachricht Photocatalyst makes hydrogen production 10 times more efficient
19.05.2017 | Kobe University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>