Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defects at the spinterface disrupt transmission

21.09.2016

Tübingen researchers put metal-oxides and organic magnets together; applications for electronics in sight

Magnets made of organic materials have a number of advantages over the classic metal or alloy magnets. They are chemically more flexible, cheaper to make, and can be better adapted to various purposes and varying designs. In practice, researchers want to apply both types of magnets in electronics – in spintronic elements, which transport information not by electrical load but via the spin of the component molecules.


An organic radical approaches a lattice of rutile crystals (red) – here with an ideal surface free of defects

Graphic: Benedetta Casu and Arrigo Calzolari

This intrinsic angular momentum is a typical characteristic of particles, such as electrons. Reza Kakavandi, Professor Thomas Chassé and Dr. Benedetta Casu of the Institute of Physical Chemistry at the University of Tübingen have investigated just such a magnetic interface between the titanium oxide crystals in rutile form and a purely organic magnet.

They found that the transition area where the materials met was highly sensitive to minimal defects in the surfaces. The results of their study have been published in the latest Nano Research.

Purely organic radicals are composed of light elements such as carbon, nitrogen and oxygen, and usually have one unpaired electron, which creates permanent magnetic momentum. “They are interesting in a whole lot of applications;” says Benedetta Casu, “They can be used particularly in storage elements, batteries, sensors and for biomedical applications. They could also be used in the construction of a quantum computer.”

The Tübingen researchers investigated the interface between a single rutile crystal and an organic radical using a very high resolution x-ray spectroscopy procedure combined with theoretical calculations by Dr. Arrigo Calzolari of the Istituto Nanoscienze in Modena, Italy. The researchers call this link between conventional and organic magnets the “spinterface” because it combines the ideas of “spin” and “interface”.

“In this experiment, organic radicals are held in place physically, and the magnetic momentum was kept between the different materials,” says Benedetta Casu. She says it worked well. But, she says, the situation changed completely when there was a tiny defect on the relevant surface of the rutile – i.e., if the crystal surfaces were not ideally ordered. “In that case, the organic radical bonded chemically with the reactive point of the defect, wiping out the magnetic momentum,” Casu explains.

This approach with the combination of x-ray spectroscopy and theoretical calculations proved to be very useful in helping the researchers to understand the mechanisms at this complex interface, according to Casu. The researchers needed to describe both the electrical charges involved as well as the spin. For the first time it became clear what important influences arise from surface defects at one of these spinterfaces. “It’s a key result, equally valid in chemistry and in physics as well as for materials sciences,” says Casu.

Publication:
Reza Kakavandi, Arrigo Calzolari, Yulia B. Borozdina, Prince Ravat, Thomas Chassé, Martin Baumgarten, and M. Benedetta Casu: Unraveling the mark of surface defects on a spinterface: The nitronyl nitroxide/TiO2(110) interface. Nano Research, DOI 10.1007/s12274-016-1228-1

Contact:
Dr. Benedetta Casu
University of Tübingen
Institute of Physical Chemistry
Phone +49 7071 29-76252
benedetta.casu[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-tuebingen.de/

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>