Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish chemists in molecular chip breakthrough

20.06.2013
Electronic components built from single molecules using chemical synthesis could pave the way for smaller, faster and more green and sustainable electronic devices. Now for the first time, a transistor made from just one molecular monolayer has been made to work where it really counts. On a computer chip.
Danish Chinese collaboration behind breakthrough

The molecular integrated circuit was created by a group of chemists and physicists from the Department of Chemistry Nano-Science Center at the University of Copenhagen and Chinese Academy of Sciences, Beijing. Their discovery “Ultrathin Reduced Graphene Oxide Films as Transparent Top-Contacts for Light Switchable Solid-State Molecular Junctions” has just been published online in the prestigious periodical Advanced Materials. The breakthrough was made possible through an innovative use of the two dimensional carbon material graphene.

First step towards integrated molecular circuit

Kasper Nørgaard is an associate professor in chemistry at the University of Copenhagen. He believes that the first advantage of the newly developed graphene chip will be to ease the testing of coming molecular electronic components. But he is also confident, that it represents a first step towards proper integrated molecular circuits.
“Graphene has some very interesting properties, which cannot be matched by any other material.

What we have shown for the first time is that it’s possible to integrate a functional component on a graphene chip.

I honestly feel this is front page news”, says Nørgaard.

See through sandwich central to function

The molecular computer chip is a sandwich built with one layer of gold, one of molecular components and one of the extremely thin carbon material graphene. The molecular transistor in the sandwich is switched on and of using a light impulse so one of the peculiar properties of graphene is highly useful. Even though graphene is made of carbon, it’s almost completely translucent.

Environmentally important. Strategically vital

The hunt for transistors, wires, contacts and other electronic components made from single molecules has had researchers working night and day. Unlike traditional components they are expected to require no heavy metals and rare earth elements. So they should be cheaper as well as less harmful to earth, water and animals. Unfortunately it has been fiendishly difficult to test how well these functional molecules work. Until now.

The luck of the draw

Previously the testing of the microscopic components had researchers resort to a method best compared to a lottery. In order to check whether or not a newly minted molecule would conduct or break a current, they had to practically dump a beakerfull of molecules between two live wires, hoping that at least one molecule had landed so that it closed the circuit.

Lottery method supplanted by precision placement

Using the new graphene chip researchers can now place their molecules with great precision. This makes it faster and easier to test the functionality of molecular wires, contacts and diodes so that chemists will know in no time whether they need to get back to their beakers to develop new functional molecules, explains Nørgaard.
“We’ve made a design, that’ll hold many different types of molecule” he says and goes on: “Because the graphene scaffold is closer to real chipdesign it does make it easier to test components, but of course it’s also a step on the road to making a real integrated circuit using molecular components. And we must not lose sight of the fact that molecular components do have to end up in an integrated circuit, if they are going to be any use at all in real life”.

The work has been supported by Danish Chinese Center for Molecular Nano-Electronics and financed by the Danish National Research Foundation, the European Union 7th framework for research (FP7) and by The Lundbeck Foundation.

Contact:
Kasper Nørgaard, 2917 6481
kn@nano.ku.dk

Bo Wegge Laursen, 3532 1881
bwl@nano.ku.dk

http://onlinelibrary.wiley.com/doi/10.1002/adma.201300607/abstract

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>