Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cut-and-paste zeolites: new, faster method for developing custom microporous materials

23.11.2012
Zeolites are minerals with a microporous structure. This makes them attractive as catalysts in industrial applications.

Unfortunately, creating synthetic zeolites is very complex. Researchers at KU Leuven, Ghent University and the University of Antwerp have discovered a way to make new zeolites quickly. “The method is faster than existing methods and contributes to the development of a more sustainable, greener chemical industry," says KU Leuven Professor Christine Kirschhock.

Zeolites are best known for their ubiquitous use as water softeners in detergents and as catalysts in industry. A catalyst is a mediator that increases the efficiency of chemical reactions, saving huge amounts of energy. Zeolites are robust and reusable – making them environmentally friendly catalysts.

There are various types of zeolites, each with their own specific structure and porous make-up. Naturally-occurring zeolites are often unsuitable for industrial applications because their pores are small. Developing synthetic zeolites, however, is very complex and often a matter of trial and error.

Around 200 different synthetic zeolites currently exist, of which only 20 are actually used in industry. The desired properties of the zeolite – its composition, pore size, reusability and so on – change with each new application. Until now, designing a zeolite with predetermined characteristics was impossible.

Researchers from Leuven, Ghent and Antwerp have now experimentally demonstrated that it is possible to cut zeolite building blocks and rearrange them into a new structure. Professor Christine Kirschhock of KU Leuven explains: “A zeolite can be thought of as a set of merged building blocks. We are now able to separate certain blocks of a zeolite and then reassemble them into different configurations, depending on the desired properties.”

This generic method for creating new zeolites has significant advantages: “In addition to new possibilities for applications, the method contributes to the development of a more sustainable, greener chemical industry. It is the first-ever example of customizable zeolite design.”

The findings were recently published online in the journal Nature Materials.
Contacts:
• Professor Christine Kirschhock, KU Leuven, Centre for Surface Chemistry and Catalysis, christine.kirschhock@biw.kuleuven.be, tel. +32 (0) 16 32 16 10

• Professor Veronique Van Speybroeck, Ghent University, Centre for Molecular Modelling, veronique.vanspeybroeck@ugent.be, tel. +32 (0) 92 64 65 58

• Professor Gustaaf Van Tendeloo, University of Antwerp, EMA, staf.vantendeloo@ua.ac.be, tel. +32 (0) 32 65 32 62

More information:
The full text of the study “Design of zeolite by inverse sigma transformation” is available on the website of Nature: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3455.html.

An online version of this press release, with accompanying images and captions, is available at: http://www.kuleuven.be/english/news/cut-and-paste-zeolites

| KU Leuven
Further information:
http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat3455.html
http://www.kuleuven.be/english/news/cut-and-paste-zeolites

More articles from Materials Sciences:

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>