Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The best cut for machining

24.10.2013
A new and verified computer model improves the machining of nanoscale semiconductor parts for the electronics industry

Brittle materials such as silicon and ceramics are used extensively in the semiconductor industry to make component parts. Materials cut to have a mirror-like surface yield the best performance, but the precision required is difficult to achieve at such a tiny scale.


Conventional machine cutting of brittle materials can result in chipping and fracturing (left), but vibration-assisted machining with the correct depth of cut produces a chip-free, mirror-like surface (right).
© 2013 A*STAR Singapore Institute of Manufacturing Technology

Xinquan Zhang at A*STAR’s Singapore Institute of Manufacturing Technology, along with co-workers at the same institute and the National University of Singapore, has developed a computer model that allows engineers to predict the best way of cutting different materials using vibration-assisted machining (VAM)1. This technique periodically interrupts the cutting process via the application of small-amplitude and high-frequency displacement to the cutting tool.

“Many researchers have observed that using VAM instead of conventional cutting techniques allows them to make cleaner, fracture-free cuts to most brittle materials,” explains Zhang. “Because no theory or model exists to explain or predict this phenomenon, we decided to investigate.”

At the nanoscale, brittle materials exhibit a certain degree of plasticity. Each material has a particular depth of cut that allows clean shearing to occur without chipping or fracturing on, or beneath, its surface. This point, known as the critical undeformed chip thickness, is directly correlated with material properties and machining conditions.

Zhang and his team studied the behavior of different brittle materials cut with VAM, during which two modes of cutting occur. In the ductile mode, plastic deformation caused by cutting is followed by elastic rebound and recovery of the material structure between vibrations. The brittle mode, on the other hand, removes material by uncontrolled crack propagation. Making a clean cut during ductile mode — before the brittle mode dominates — is therefore desirable.

The researchers modeled the energy consumption of each mode in terms of material removal as the vibrating tool moved, taking into account tool geometry, material properties and the cutting speed.

“By examining energy consumption and material deformation we were able to describe the mechanics when VAM moved from the ductile to the brittle mode,” explains Zhang. “We then established a model to predict [the] critical undeformed chip thicknesses by finding the transition point between the two modes.”

By examining energy consumption and material deformation we were able to describe the mechanics when VAM moved from the ductile to the brittle mode,” explains Zhang. “We then established a model to predict [the] critical undeformed chip thicknesses by finding the transition point between the two modes.”

Through a series of experiments, the team verified that the model accurately predicts the critical undeformed chip thicknesses of single-crystal silicon when cut at various VAM speeds.

“Our model will help engineers to select optimized machining parameters depending on their desired material,” says Zhang. “Advantages could include higher productivity, lower costs, and improved product quality for semiconductor parts and other nanoscale technologies.”

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Associated links
http://www.research.a-star.edu.sg/research/6777
Journal information
Zhang, X., Arif, M., Liu, K., Kumar, A. S. & Rahman, M. A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials. International Journal of Machine Tools and Manufacture 69, 57–66 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6777
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>