Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal film growth: nanosheets extend epitaxial growth applications

19.12.2013
Molecularly thin two-dimensional crystals can alleviate the lattice matching restrictions of epitaxial crystalline thin film growth, as reported by researchers in Japan.
Source: Research highlight from MANA, the International Center for Materials Nanoarchitectonics at NIMS, Tsukuba, Japan.

Schematic illustration of nanosheet structures for Ca2Nb3O10-, Ti0.87O20.52-, and MoO2ä− nanosheets and corresponding crystal planes of SrTiO3.

Tsukuba, Japan (MANA) 17 December 2013

MANA Research Highlights:

Epitaxial growth has become increasingly important for growing crystalline thin films with tailored electronic, optical and magnetic properties for technological applications. However the approach is limited by the high structural similarities required between an underlying substrate and a growing crystal layer on top of it.

Takayoshi Sasaki and colleagues at the International Center for Materials Nanoarchitectonics (MANA) and the University of Tokyo in Japan demonstrate how using two-dimensional materials they can extend the versatility of epitaxial growth techniques.

In 1984 Komo proposed that certain layered materials such as mica or graphite can be easily cleaved to produce surfaces with no dangling bonds that would alleviate the lattice matching requirements for epitaxial growth.

Interactions between adatoms on these cleaved materials would be more prominent compared with growth on single crystalline substrates since the interlayer van der Waals interactions are weak. However the variety of suitable cleaved surfaces is limited and handling them can be difficult.

With the increasing attention on two-dimensional materials over recent years Takayoshi Sasaki and colleagues decided to look into molecularly thin two-dimensional crystals as possible seed layers to alleviate lattice matching requirements in a manner similar to Komo’s van der Waals epitaxy.

They deposited nanosheets of either Ca2Nb3O10-, Ti0.87O20.52-, or MoO2ä- as highly organised layers onto amorphous glass. On these different surfaces they grew different orientations of SrTiO3, an important perovskite for various technological applications. The approach demonstrated the ability to grow different orientations of SrTiO3 with a high level of precision.

The researchers suggest that in the future, it would be of great interest to achieve more sophisticated control of growth geometry using nanosheets with a complex structure. They add, “Such advanced design, hardly realized with present technology, will pave a new way for further development of crystal engineering.”

Contact Information
International Center of Materials Nanoarchitectonics (MANA)
National Institute for Materials Science
1-1 Namiki Tsukuba, Ibaraki 305-0044 JAPAN
Phone: +81-29-860-4710
E-mail: mana-pr@ml.nims.go.jp
About MANA
http;//www.nims.go.jp/mana/
MANA Research Highlights
Crystal film growth: nanosheets extend epitaxial growth applications
http://www.nims.go.jp/mana/research/highlight/vol8.html
Publisher
International Center for Materials Nanoarchitectonics (WPI-MANA)
Address: 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
URL: http://www.nims.go.jp/mana/
Journal information
Versatile van der Waals epitaxy-like growth of crystal films using two-dimensional nanosheets as a seed layer: Orientation tuning of SrTiO3 films along three important crystallographic axes of (100), (110) and (111) on glass substrate Tatsuo Shibata1, Hikaru Takano1, Yasuo Ebina1, Dae Sung Kim1, Tadashi C. Ozawa1, Kosho Akatsuka1,Tsuyoshi Ohnishi1, Kazunori Takada1, Toshihiro Kogure2, and Takayoshi Sasaki*1,2013 J. Mater. Chem. C DOI:10.1039/C3TC31787K
Affiliations
1. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
2. Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

*Corresponding author.

Adarsh Sandhu | Research asia research news
Further information:
http://www.nims.go.jp/mana/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>