Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The crystal's corners: New nanowire structure has potential to increase semiconductor applications

24.04.2013
University of Cincinnati research describes discovery of a new structure that is a fundamental game changer in the physics of semiconductor nanowires.

There’s big news in the world of tiny things.

New research led by University of Cincinnati physics professors Howard Jackson and Leigh Smith could contribute to better ways of harnessing solar energy, more effective air quality sensors or even stronger security measures against biological weapons such as anthrax. And it all starts with something that’s 1,000 times thinner than the typical human hair – a semiconductor nanowire.

UC’s Jackson, Smith, recently graduated PhD student Melodie Fickenscher and physics doctoral student Teng Shi, as well as several colleagues from across the US and around the world recently have published the research paper “Optical, Structural and Numerical Investigations of GaAs/AlGaAs Core-Multishell Nanowire Quantum Well Tubes” in Nano Letters, a premier journal on nanoscience and nanotechnology published by the American Chemical Society. In the paper, the team reports that they’ve discovered a new structure in a semiconductor nanowire with unique properties.

“This kind of structure in the gallium arsenide/aluminum gallium arsenide system had not been achieved before,” Jackson says. “It’s new in terms of where you find the electrons and holes, and spatially it’s a new structure.”

EYES ON SIZE AND CORNERING ELECTRONS

These little structures could have a big effect on a variety of technologies. Semiconductors are at the center of modern electronics. Computers, TVs and cellphones have them. They’re made from the crystalline form of elements that have scientifically beneficial electrical conductivity properties. Many semiconductors are made of silicon, but in this case they are made of gallium arsenide. And while widespread use of these thin nanowires in new devices might still be around the corner, the key to making that outcome a reality in the coming years is what’s in the corner.

By using a thin shell called a quantum well tube and growing it – to about 4 nanometers thick – around the nanowire core, the researchers found electrons within the nanowire were distributed in an unusual way in relation to the facets of the hexagonal tube. A close look at the corners of the tube’s facets revealed something unexpected – a high concentration of ground state electrons and holes.

“Having the faceting really matters. It changes the ballgame,” Jackson says. “Adjusting the quantum well tube width allows you to control the energy – which would have been expected – but in addition we have found that there’s a highly localized ground state at the corners which then can give rise to true quantum nanowires.”

The nanowires the team uses for its research are grown at the Australian National University in Canberra, Australia – one partner in this project that extends to disparate parts of the globe.

AFFECTING THE SCIENCE OF SMALL IN A BIG WAY

The team’s discovery opens a new door to further study of the fundamental physics of semiconductor nanowires. As for leading to advances in technology such as photovoltaic cells, Jackson says it’s too soon to tell because quantum nanowires are just now being explored. But in a world where hundreds of dollars’ worth of technology is packed into a 5-by-2.5 inch iPhone, it’s not hard to see how small but powerful science comes at a premium.

The team at UC is one of only about a half dozen in the US conducting competitive research in the field. It’s a relatively young discipline, too, Jackson says, and one that’s moving fast. For such innovative science, he says it’s important to have a collaborative effort. The team includes scientists from research centers in the Midwest, the West Coast and all the way Down Under: UC, Miami University of Ohio and Sandia National Laboratories in California here in the US; and Monash University and the Australian National University in Australia.

The team’s efforts are another example of how UC not only stands out as a leader in top-notch science, but also in shaping the future of the discipline by providing its students with high-quality educational and research opportunities.

“We’re training students in state-of-the-art techniques on state-of-the-art materials doing state-of-the-art physics,” Jackson says. “Upon completing their education here, they’re positioned to go out and make contributions of their own.”

Additional contributors to the paper are Jan Yarrison-Rice of Miami University, Oxford, Ohio; Bryan Wong of Sandia National Laboratories, Livermore, Calif.; Changlin Zheng, Peter Miller and Joanne Etheridge of Monash University, Victoria, Australia; and Qiang Gao, Shriniwas Deshpande, Hark Hoe Tan and Chennupati Jagadish of the Australian National University, Canberra, Australia.

Tom Robinette | EurekAlert!
Further information:
http://www.uc.edu
http://www.uc.edu/news/NR.aspx?id=17755

Further reports about: Canberra gallium arsenide photovoltaic cell quantum nanowires

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>