Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Creating a water layer for a clearer view


Scientists at IMRE have invented a new permanent surface coating that attracts water instead of repelling it, for a better, clearer view. The patented technology simplifies the coating process, making it more cost-effective for manufacturers.

When it comes to fogged up glassware or windows, the best way to keep a clear view seems to be by wiping the water droplets away constantly or having coatings that prevent the water from sticking to the glass. However, scientists at A*STAR’s Institute of Materials Research and Engineering (IMRE) have discovered that doing just the opposite - collecting the water to create a uniform, thin, transparent layer - actually helps produce a better, clearer view. 

Photo showing the effectiveness of CleanClear:The uncoated section (left) of a glass slide is peppered with water droplets whereas the coated section (right) has a thin film of water that makes the glass clear.

IMRE has invented a new technology, CleanClear, which is a durable and permanent ceramic coating that is transparent and superhydrophilic, which means it attracts water instead of repelling it. This creates a layer of water that prevents fogging on glass or plastic surfaces, and keeps surfaces cleaner for a longer period of time. Water-forming coatings create an additional uniform water layer to produce a better view as opposed to water-repelling technologies that form water droplets which impair vision.

Reduced visibility from fogged up glass or plastic surfaces is a common problem in wet or humid environments, and affects a multitude of products such as car windshields, spectacles, goggles, and even covers for cookware. The majority of solutions rely on water-repelling coatings. Unfortunately, current coatings are not durable and most have to be re-applied regularly. 

How the technology works

The new patented technology from A*STAR’s IMRE is a one-time ceramic coating that can be applied onto glass or plastic materials at processing temperatures below 100oC. This is important as it makes the coating process simpler and ultimately, more cost-effective. Currently, commonly used chemical coatings degrade easily with continued usage and have to be re-applied. IMRE’s new ceramic coating is durable, permanent and only needs to be applied once. Although there are also other similar “water-loving” coatings, these are often processed at much higher temperatures and can only be activated by ultraviolet (UV) rays or sunlight. 

Large multinational companies also use alternative coatings like titanium dioxide (TiO2) to produce self-cleaning glass surfaces that prevent dirt and dust from sticking. However, the TiO2 ceramic coats can only be applied on surfaces during the manufacturing process at temperatures above 600oC. This limits their application to hard materials like glass. CleanClear can be adapted to multiple surfaces and materials, ranging from glass to plastics. TiO2 coatings are also activated by sunlight but IMRE’s new coating does not require activation and continues to function even at night and in low-light, indoor environments.

There are many useful applications for IMRE’s “water-loving” surface. For example, it can be applied on car windshields, mirrors and motorcycle visors, allowing for better visibility in the rain. Coating building exteriors with this new material allows for self-cleaning during rain. Due to its adaptability for application on various surfaces besides glass, this could also result in potential cost savings. CleanClear can also be applied to consumer products to reduce condensation on glass covers for pots, food containers and hot food displays.

“Conventional technologies mainly use organic-based materials and some with nanoparticles but these don’t last long, and need to be re-coated from time to time. The CleanClear process makes the coating part of the surface – permanently,” said Dr Gregory Goh, the lead scientist from IMRE who developed the technology last year.

“CleanClear could be used to help create a sort of a clear ‘vision shield’ for today’s car windshields during heavy rain,” added Dr Goh. “Or we could use it to replace current daytime, UV light activated coatings with an all-day, all-night CleanClear coat on building facades to keep glass cleaner.”

IMRE is in talks with companies to further develop and license the technology.

For media queries and clarifications, please contact:

Eugene Low
Senior Manager, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6874 8491

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.

For more information about IMRE, please visit 

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

For more information on A*STAR, please visit

Associated links

Eugene Low | Research SEA News
Further information:

Further reports about: IMRE Technology coating environments glass materials plastic surfaces temperatures

More articles from Materials Sciences:

nachricht ORNL researchers find 'greener' way to assemble materials for solar applications
06.10.2015 | DOE/Oak Ridge National Laboratory

nachricht Extending a Battery's Lifetime with Heat
05.10.2015 | American Institute of Physics (AIP)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>