Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating a water layer for a clearer view

13.06.2014

Scientists at IMRE have invented a new permanent surface coating that attracts water instead of repelling it, for a better, clearer view. The patented technology simplifies the coating process, making it more cost-effective for manufacturers.

When it comes to fogged up glassware or windows, the best way to keep a clear view seems to be by wiping the water droplets away constantly or having coatings that prevent the water from sticking to the glass. However, scientists at A*STAR’s Institute of Materials Research and Engineering (IMRE) have discovered that doing just the opposite - collecting the water to create a uniform, thin, transparent layer - actually helps produce a better, clearer view. 


Photo showing the effectiveness of CleanClear:The uncoated section (left) of a glass slide is peppered with water droplets whereas the coated section (right) has a thin film of water that makes the glass clear.

IMRE has invented a new technology, CleanClear, which is a durable and permanent ceramic coating that is transparent and superhydrophilic, which means it attracts water instead of repelling it. This creates a layer of water that prevents fogging on glass or plastic surfaces, and keeps surfaces cleaner for a longer period of time. Water-forming coatings create an additional uniform water layer to produce a better view as opposed to water-repelling technologies that form water droplets which impair vision.

Reduced visibility from fogged up glass or plastic surfaces is a common problem in wet or humid environments, and affects a multitude of products such as car windshields, spectacles, goggles, and even covers for cookware. The majority of solutions rely on water-repelling coatings. Unfortunately, current coatings are not durable and most have to be re-applied regularly. 

How the technology works

The new patented technology from A*STAR’s IMRE is a one-time ceramic coating that can be applied onto glass or plastic materials at processing temperatures below 100oC. This is important as it makes the coating process simpler and ultimately, more cost-effective. Currently, commonly used chemical coatings degrade easily with continued usage and have to be re-applied. IMRE’s new ceramic coating is durable, permanent and only needs to be applied once. Although there are also other similar “water-loving” coatings, these are often processed at much higher temperatures and can only be activated by ultraviolet (UV) rays or sunlight. 

Large multinational companies also use alternative coatings like titanium dioxide (TiO2) to produce self-cleaning glass surfaces that prevent dirt and dust from sticking. However, the TiO2 ceramic coats can only be applied on surfaces during the manufacturing process at temperatures above 600oC. This limits their application to hard materials like glass. CleanClear can be adapted to multiple surfaces and materials, ranging from glass to plastics. TiO2 coatings are also activated by sunlight but IMRE’s new coating does not require activation and continues to function even at night and in low-light, indoor environments.

There are many useful applications for IMRE’s “water-loving” surface. For example, it can be applied on car windshields, mirrors and motorcycle visors, allowing for better visibility in the rain. Coating building exteriors with this new material allows for self-cleaning during rain. Due to its adaptability for application on various surfaces besides glass, this could also result in potential cost savings. CleanClear can also be applied to consumer products to reduce condensation on glass covers for pots, food containers and hot food displays.

“Conventional technologies mainly use organic-based materials and some with nanoparticles but these don’t last long, and need to be re-coated from time to time. The CleanClear process makes the coating part of the surface – permanently,” said Dr Gregory Goh, the lead scientist from IMRE who developed the technology last year.

“CleanClear could be used to help create a sort of a clear ‘vision shield’ for today’s car windshields during heavy rain,” added Dr Goh. “Or we could use it to replace current daytime, UV light activated coatings with an all-day, all-night CleanClear coat on building facades to keep glass cleaner.”

IMRE is in talks with companies to further develop and license the technology.

For media queries and clarifications, please contact:

Eugene Low
Senior Manager, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6874 8491
Email: loweom@scei.a-star.edu.sg


About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.

For more information about IMRE, please visit www.imre.a-star.edu.sg 


About the Agency for Science, Technology and Research (A*STAR)


The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

For more information on A*STAR, please visit www.a-star.edu.sg

Associated links

Eugene Low | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: IMRE Technology coating environments glass materials plastic surfaces temperatures

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>