Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating a water layer for a clearer view

13.06.2014

Scientists at IMRE have invented a new permanent surface coating that attracts water instead of repelling it, for a better, clearer view. The patented technology simplifies the coating process, making it more cost-effective for manufacturers.

When it comes to fogged up glassware or windows, the best way to keep a clear view seems to be by wiping the water droplets away constantly or having coatings that prevent the water from sticking to the glass. However, scientists at A*STAR’s Institute of Materials Research and Engineering (IMRE) have discovered that doing just the opposite - collecting the water to create a uniform, thin, transparent layer - actually helps produce a better, clearer view. 


Photo showing the effectiveness of CleanClear:The uncoated section (left) of a glass slide is peppered with water droplets whereas the coated section (right) has a thin film of water that makes the glass clear.

IMRE has invented a new technology, CleanClear, which is a durable and permanent ceramic coating that is transparent and superhydrophilic, which means it attracts water instead of repelling it. This creates a layer of water that prevents fogging on glass or plastic surfaces, and keeps surfaces cleaner for a longer period of time. Water-forming coatings create an additional uniform water layer to produce a better view as opposed to water-repelling technologies that form water droplets which impair vision.

Reduced visibility from fogged up glass or plastic surfaces is a common problem in wet or humid environments, and affects a multitude of products such as car windshields, spectacles, goggles, and even covers for cookware. The majority of solutions rely on water-repelling coatings. Unfortunately, current coatings are not durable and most have to be re-applied regularly. 

How the technology works

The new patented technology from A*STAR’s IMRE is a one-time ceramic coating that can be applied onto glass or plastic materials at processing temperatures below 100oC. This is important as it makes the coating process simpler and ultimately, more cost-effective. Currently, commonly used chemical coatings degrade easily with continued usage and have to be re-applied. IMRE’s new ceramic coating is durable, permanent and only needs to be applied once. Although there are also other similar “water-loving” coatings, these are often processed at much higher temperatures and can only be activated by ultraviolet (UV) rays or sunlight. 

Large multinational companies also use alternative coatings like titanium dioxide (TiO2) to produce self-cleaning glass surfaces that prevent dirt and dust from sticking. However, the TiO2 ceramic coats can only be applied on surfaces during the manufacturing process at temperatures above 600oC. This limits their application to hard materials like glass. CleanClear can be adapted to multiple surfaces and materials, ranging from glass to plastics. TiO2 coatings are also activated by sunlight but IMRE’s new coating does not require activation and continues to function even at night and in low-light, indoor environments.

There are many useful applications for IMRE’s “water-loving” surface. For example, it can be applied on car windshields, mirrors and motorcycle visors, allowing for better visibility in the rain. Coating building exteriors with this new material allows for self-cleaning during rain. Due to its adaptability for application on various surfaces besides glass, this could also result in potential cost savings. CleanClear can also be applied to consumer products to reduce condensation on glass covers for pots, food containers and hot food displays.

“Conventional technologies mainly use organic-based materials and some with nanoparticles but these don’t last long, and need to be re-coated from time to time. The CleanClear process makes the coating part of the surface – permanently,” said Dr Gregory Goh, the lead scientist from IMRE who developed the technology last year.

“CleanClear could be used to help create a sort of a clear ‘vision shield’ for today’s car windshields during heavy rain,” added Dr Goh. “Or we could use it to replace current daytime, UV light activated coatings with an all-day, all-night CleanClear coat on building facades to keep glass cleaner.”

IMRE is in talks with companies to further develop and license the technology.

For media queries and clarifications, please contact:

Eugene Low
Senior Manager, Corporate Communications
Agency for Science, Technology and Research
Tel: +65 6874 8491
Email: loweom@scei.a-star.edu.sg


About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally.

For more information about IMRE, please visit www.imre.a-star.edu.sg 


About the Agency for Science, Technology and Research (A*STAR)


The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis, as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

For more information on A*STAR, please visit www.a-star.edu.sg

Associated links

Eugene Low | Research SEA News
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

Further reports about: IMRE Technology coating environments glass materials plastic surfaces temperatures

More articles from Materials Sciences:

nachricht Combining the elements palladium and ruthenium for industry
22.09.2016 | National Institute for Materials Science

nachricht Defects at the spinterface disrupt transmission
21.09.2016 | Eberhard Karls Universität Tübingen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>