Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooperation on Single-Walled Nano Tubes with Korean company KH Chemicals signed

10.09.2012
In order to develop and to conduct a joint marketing on single-walled nanotubes (SWNT) in Europe and Japan, Fraunhofer IPA is cooperating with the Korean company KH Chemicals (KH Chem).
On August 16 Ivica Kolaric, head of the department “Functional materials” and head of Fraunhofer Office for Process Engineering of Functional Materials and Robotics OPER in Japan, signed the cooperation contract.

“This contract marks a new breakthrough in the commercialization of various product applications of carbon nanotubes”, says Ivica Kolaric. It makes mass supply of high quality SWNTs possible.
Currently, the usage of SWNT for transparent conductive films and inks are being prepared, which will be used as indium tin oxide alternatives (ITO). Additionally, Fraunhofer IPA is further developing applications in the fields of battery technology, composites, automotive and biology.

Fraunhofer has been working for more than 12 years on the development of carbon nanotubes applications and has dealt with SWNT materials from many different producers. “KH Chem’s SWNTs are one of the best tubes for its performance, quality – and especially its great competitiveness in mass production” noted Ivica Kolaric. The network with Korean companies like KH Chem should be further extended and deepened.

Sang Chul Shin, the CEO of KH Chemicals also emphasized the meaning of this cooperation for his company: “KH Chem has developed a very unique, continuous SWNT production process that produces top quality SWNTs with almost no other carbon impurities. This contract proves that our mass production methodology has been recognized by one of the world’s leading research teams.” Through this partnership with Fraunhofer IPA, Sang Chul Shin considers future markets with SWNT as prepared.

The Korean company KH Chemicals was founded in 2001. It produces SWNT by applying a patented process. At the end of 2009, the company completed its first production line in Gangneung Science Industrial Complex. It can produce one ton of SWNT a year.

SWNT is a new material, which can be seen as a “rolled up graphene sheet” with a diameter of 1~3 nm. Compared to copper, it shows better electrical (1000 times) and thermal (10 times) conductivity properties. In comparison to steel, its tensile strength is 100 times higher. Due to their electrical conductivity, SWNTs can be used in e.g. transparent conductive films and electrically conductive polymers. Additionally, applications like heat resistant new materials, sporting goods with high strength and high elasticity etc. can be realized using the thermal properties of SWNT. Further important applications fields are batteries, solar cells and energy storage, which are also possible with SWNTs. The market for CNT is being forecasted to reach 527 million US dollars by the year 2016 – the market for SWNT will grow by 149 % and reach 115 million US dollars.

Weitere Ansprechpartner
Dipl.-Ing. (FH) Ivica Kolaric
Telefon +49 711 970-3729
ivica.kolaric@ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut
Further information:
http://www.ipa.fraunhofer.de

More articles from Materials Sciences:

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

nachricht Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging
24.04.2017 | Pohang University of Science & Technology (POSTECH)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>