Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooperation on Single-Walled Nano Tubes with Korean company KH Chemicals signed

10.09.2012
In order to develop and to conduct a joint marketing on single-walled nanotubes (SWNT) in Europe and Japan, Fraunhofer IPA is cooperating with the Korean company KH Chemicals (KH Chem).
On August 16 Ivica Kolaric, head of the department “Functional materials” and head of Fraunhofer Office for Process Engineering of Functional Materials and Robotics OPER in Japan, signed the cooperation contract.

“This contract marks a new breakthrough in the commercialization of various product applications of carbon nanotubes”, says Ivica Kolaric. It makes mass supply of high quality SWNTs possible.
Currently, the usage of SWNT for transparent conductive films and inks are being prepared, which will be used as indium tin oxide alternatives (ITO). Additionally, Fraunhofer IPA is further developing applications in the fields of battery technology, composites, automotive and biology.

Fraunhofer has been working for more than 12 years on the development of carbon nanotubes applications and has dealt with SWNT materials from many different producers. “KH Chem’s SWNTs are one of the best tubes for its performance, quality – and especially its great competitiveness in mass production” noted Ivica Kolaric. The network with Korean companies like KH Chem should be further extended and deepened.

Sang Chul Shin, the CEO of KH Chemicals also emphasized the meaning of this cooperation for his company: “KH Chem has developed a very unique, continuous SWNT production process that produces top quality SWNTs with almost no other carbon impurities. This contract proves that our mass production methodology has been recognized by one of the world’s leading research teams.” Through this partnership with Fraunhofer IPA, Sang Chul Shin considers future markets with SWNT as prepared.

The Korean company KH Chemicals was founded in 2001. It produces SWNT by applying a patented process. At the end of 2009, the company completed its first production line in Gangneung Science Industrial Complex. It can produce one ton of SWNT a year.

SWNT is a new material, which can be seen as a “rolled up graphene sheet” with a diameter of 1~3 nm. Compared to copper, it shows better electrical (1000 times) and thermal (10 times) conductivity properties. In comparison to steel, its tensile strength is 100 times higher. Due to their electrical conductivity, SWNTs can be used in e.g. transparent conductive films and electrically conductive polymers. Additionally, applications like heat resistant new materials, sporting goods with high strength and high elasticity etc. can be realized using the thermal properties of SWNT. Further important applications fields are batteries, solar cells and energy storage, which are also possible with SWNTs. The market for CNT is being forecasted to reach 527 million US dollars by the year 2016 – the market for SWNT will grow by 149 % and reach 115 million US dollars.

Weitere Ansprechpartner
Dipl.-Ing. (FH) Ivica Kolaric
Telefon +49 711 970-3729
ivica.kolaric@ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut
Further information:
http://www.ipa.fraunhofer.de

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>