Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool it, quick: Rapid cooling leads to stronger alloys

10.07.2013
Researchers reveal a new technique to produce high strength metallic alloys, at a lower cost using less energy

A team of researchers from the University of Rostock in Germany has developed a new way to rapidly produce high strength metallic alloys, at a lower cost using less energy than before. It's expected that this breakthrough will profoundly change how we produce components used in a diverse range of applications; including transport and medical devices.

The research, which appears in the latest issue of the open access journal Materials Today, reports on the first Spark Plasma Sintering (SPS) system with an integrated gas quenching mechanism, capable of alternating the phase compositions and retaining the smallest grain features inside a structured metallic alloy.

SPS is a technique used to fuse fine powders into a dense solid material, by placing powder into a mold (or die) and simultaneously applying pulses of electric current and mechanical pressure to it. By varying SPS cooling rates, it is possible to control the phase and grain sizes in a material, and so, to tune its mechanical properties. In their study, the team of researchers led by Dr. Eberhard Burkel, a Professor of Physics of New Materials, demonstrated that rapidly cooling a material directly after SPS fabrication can produce a material with enhanced hardness, strength and ductility.

The new rapid cooling SPS system is based on a commercially available design, modified to include a series of gas inlet nozzles. After sintering, most SPS systems are left to cool naturally, or are flooded with argon gas. The system blasts nitrogen gas into the chamber at high speeds, rapidly cooling the material.

To demonstrate the utility of the system, Grade 5 Titanium (Ti-6Al-4V) – known as the "workhorse" of the titanium industry – was produced at different cooling rates. The most-rapidly cooled alloy was found to be up to 12% harder than the naturally-cooled alloy, and with an improved ductility up to 34±3%. Ti-6Al-4V is the most common titanium alloy in use worldwide, with applications in the aerospace, biomedical and marine industries.

In their article the researchers explain, "This high-ductile alloy offers unprecedented opportunities for the easy manufacturing of complex shapes for biomedical and new engineering applications."

First author of the study, Dr. Faming Zhang, said "The system will play a major role in the production of novel materials, from metals, alloys, metal matrix composites to micro- and nanostructured semiconductors."

Notes for Editors

This article is "The potential of rapid cooling spark plasma sintering for metallic materials" by Faming Zhang, Michael Reich, Olaf Kessler and Eberhard Burkel. It appears in Materials Today, Volume 16, Issue 5, Page 192-197 (2013) published by Elsevier. Full text of the article is freely available from here. Journalists wishing to interview the authors may contact Dr. Stewart Bland at +44 1865 84 3124 or s.bland@elsevier.com

About Materials Today

Materials Today is the Gateway to Materials Science and home of the Open Access Journal of the same name. The journal publishes peer-refereed review and research articles that assess the latest findings and examine the future challenges, as well as comment and opinion pieces from leading scientists discussing issues at the forefront of materials science. Visit http://www.materialstoday.com for access. Materials Today also publishes news, interviews, educational webinars, jobs and events; and provides free access to a range of specially selected articles from Elsevier's materials science journals. For more information on all aspects of Materials Today, including the editorial calendar and advertising options, contact the editor, Dr. Stewart Bland at s.bland@elsevier.com. Follow @MaterialsToday on Twitter; and on Facebook: http://www.facebook.com/elsevier.materials.

About Open Access Publishing at Elsevier

Elsevier has been providing open access publishing options since 2005. Today, researchers can choose to publish in over 1,500 hybrid journals as well as 39 full open access journals and these numbers will continue to grow rapidly. All of Elsevier's open access publications have been peer reviewed, ensuring that the broader community not only reads the latest research but that it is factual, original and of the highest quality and ethical standards. For more information about Elsevier's open access program, visit http://www.elsevier.com/openaccess

About Elsevier

Elsevier is a world-leading publisher of scientific, technical and medical information products and services. The company works in partnership with the global science and health communities to publish more than 2,000 journals, including The Lancet and Cell, and close to 20,000 book titles, including major reference works from Mosby and Saunders. Elsevier's online solutions include SciVerse ScienceDirect, SciVerse Scopus, Reaxys, MD Consult and Nursing Consult, which enhance the productivity of science and health professionals, and the SciVal suite and MEDai's Pinpoint Review, which help research and health care institutions deliver better outcomes more cost-effectively.

A global business headquartered in Amsterdam, Elsevier employs 7,000 people worldwide. The company is part of Reed Elsevier Group PLC, a world-leading publisher and information provider, which is jointly owned by Reed Elsevier PLC and Reed Elsevier NV. The ticker symbols are REN (Euronext Amsterdam), REL (London Stock Exchange), RUK and ENL (New York Stock Exchange).

Stewart Bland | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>