Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlled arrangement of nanoparticles for improved electrical conductivity

21.10.2013
Flexible displays, cost-efficient solar cells for a new era of energy production, futuristic lighting at home – all require thin layers with specific properties.

Scientists at the INM – Leibniz Institute for New Materials are exploring new routes to such coatings in "NanoSPEKT", a project funded by the Federal Ministry of Education and Research (BMBF).


Structured layers containing nanoparticles as transparent, conductive materials for electronics and photonics. Source: Uwe Bellhäuser

They are aiming at flexible and transparent coatings that conduct electricity particularly well. The researchers combine inorganic nanoparticles with polymers and rationally arrange the particles inside the composite. The research will lead to particle-containing inks and coating methods that yield thin films with improved properties at lower cost.

"Today, the structure of composite layers is random. It does not help to develop highly conductive particles for composites if they do not touch each other: The electrons have to tunnel through the gaps, and electric conductivity is lost," says Tobias Kraus, head of the Structure Formation Group at INM. He and his colleagues strive to improve control of the distribution of the particles inside the layers.

It is already possible to coat large areas with conductive films, for example using so-called “roll-to-roll” production methods. The scientists at INM will use compatible methods to enable cost-efficient large-scale production . They study how the particles change in the composite during processing. "If we manage to pack the conductive nanoparticles more closely, the electrical conductivity of the film increases," says the group leader. This may be achieved by gently sintering the particles inside the polymer.

Background
"NanoSPEKT" is funded by the Federal Ministry of Education and Research (BMBF) with 2.5 million euros. As a project in the framework of the funding initiative "NanoMatFutur" of the BMBF, "NanoSPEKT" will be initially supported for four years, a period that can be extended.

The funding initiative "NanoMatFutur" is part of the framework program "Materials Innovations for Industry and Society" (WING). WING combines traditional materials research withresearch on chemical technologies and materials-specific nanotechnology. It is part of the High-tech Strategy of the Federal Government.

Contact:
Dr Tobias Kraus
INM – Leibniz Institute for New Materials
Head Program Division Structure Formation
Phone: +49681-9300-389
tobias.kraus@inm-gmbh.de
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/en
http://www.leibniz-gemeinschaft.de/en/home

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>