Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017

New 3-D-printing and electroplating method produces high-quality metal electrodes for molecular beam-splitters

Many measurement techniques, such as spectroscopy, benefit from the ability to split a single beam of light into two in order to measure changes in one of them. The crucial device that separates the beam is the beam-splitter. These have been mostly limited to light beams, where one uses simply a partially reflective glass.


This is the 3-D printer used in this study.

Credit: A.Osterwalder/EPFL

EPFL scientists have now developed a similar device for splitting beams of molecules, where high-voltage electrodes are used to control the motion of the molecules inside a vacuum. The electrodes are built by an innovative method that combines 3D printing and electroplating for the fabrication of complex metallic structures.

The same approach can also be used in a wide range of other experiments. The new method is published in Physical Review Applied and overcomes previous fabrication problems thus opening up new avenues.

Sean Gordon and Andreas Osterwalder at EPFL's Institute of Chemical Sciences and Engineering, developed the new fabrication method, and demonstrated it by constructing the complicated combination of electrodes required to guide and split beams of molecules. The production method not only allows complex shapes to be made but, in addition, speeds up production by a factor of 50-100.

The technique begins by 3D-printing a plastic piece and then electroplating a 10 μm-thick metal layer onto it. Electroplating is an established technique in various branches of industry like the automobile industry, fabrication of jewelry, or plumbing. It generally uses electrolysis to coat a conductive material with a metallic layer. "but the plating of printed pieces has not been done before in the context of scientific applications," says Andreas Osterwalder.

To make the printed plastic pieces conductive and thus amenable to electroplating, they were first pre-treated by a special procedure developed by the company Galvotec near Zurich. Once the first conductive layer was applied, the pieces could be treated as if they were metallic. The first step can be applied selectively to certain regions of the printed piece, so that the final device contains some areas that are metallic and conductive while others remain insulating.

This process enabled the researchers to build two electrically independent high-voltage electrodes from a single printed plastic piece and with the correct geometry for beam-splitting. Meanwhile, the procedure allows an almost free choice of the coating metal, including some that would be very hard to machine.

This approach also produced surfaces that have no scratches, recesses or abrasions. The molecular beam-splitter used to prove the new method is a structure based on very complex electrodes that require impeccable surface properties and high-precision alignment. "All of which comes for free when using the 3D-printing approach," says Andreas Osterwalder.

Along with cost, the new 3D printing/electroplating method also drastically reduces production time: Traditional manufacturing for such structures can often take several months. But in the EPFL study, all the components were printed within 48 hours and electroplating only took a day. The shorter time allows for very fast turnover and more flexibility in the development and testing of new components.

Finally, 3D printing uses an entirely digital workflow -- the electrodes are printed directly from a computer and require no manual input. This means that an exact replica of a complete experimental setup can be reproduced anywhere by simply transferring a computer file.

The new fabrication method highlights the enormous potential that 3D printers have for fundamental research, in a variety of research areas. It especially demonstrates that we can now quickly produce chemically robust electrically conductive pieces with high precision and at low cost since 3D printing is virtually unlimited in terms of design and the geometry of structures.

###

This work was funded by EPFL and the Swiss National Science Foundation (SNSF).

Reference

Sean D. S. Gordon, Andreas Osterwalder. 3D printed beam splitter for polar neutral molecules. Physical Review Applied 27 April 2017. DOI: 10.1103/PhysRevApplied.7.044022

Nik Papageorgiou | EurekAlert!

Further reports about: 3D EPFL Polytechnique beam of light electrodes molecular motion plastic

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>