Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Concentrated Competencies for Non-Metals

Dr. Uwe Stute is head of the new Department of Technologies for Non-Metals at the Laser Zentrum Hannover e.V. (LZH, which focuses on the thematic fields of glass, photovoltaics and composite materials.

The new Department of Technologies for Non-Metals at the Laser Zentrum Hannover e.V. (LZH) focuses on the thematic fields of glass, photovoltaics and composite materials. From basic research projects to making prototypes, this department concentrates on specific process chain solutions for industrial manufacturing.

Whether in glass processing, for the manufacturing of solar collectors, or for processing fiber-reinforced plastics, in comparison to conventional methods, the use of lasers can significantly increase quality and productivity, or even make completely new processing methods possible. For example, controlled energy input can avoid damage from thermal effects in glass components. Composites also place complex requirements on processing, due to the special characteristics of the carbon fibers.

Material damage and high wear rates for tooling composite materials can be significantly reduced using laser technology instead of the classical material removal methods. And in the field of photovoltaics, significantly higher effectivity rates for solar cells can be achieved by using selective doping, for example, which is impossible without laser technology.

By creating a new department for non-metals, the LZH would like to make a substantial contribution to innovative developments in the fields of energy generation and resource conservation. The main goals of this department include not only precise micro-machining, but also highly productive throughput optimization of large areas. The tool "laser" must be optimized in order to structure, cut, form or weld the different non-metal materials, and the laser must be integrated into complex production and manufacturing processes.

Dr. Uwe Stute is head of the new department. He has returned to the LZH after three years in industrial as a branch manager for photovoltaics. Before he started working for the firm Trumpf Laser, he was head of the Department of Production and System Technology at the LZH, from 2004 to 2008. He is excited about his return to the Hannoverian research center. "I think it is extremely interesting", he says, "to be able to work on laser processes in areas which are presently undergoing major developments. Laser technology has an enormous potential in this field."

Stute, who has a doctor's degree in physics, states that the most important current research goals of his department are to optimize glass-metal/glass-glass welding for the production of solar collectors, open new production possibilities in the field of photovoltaics using "cold" laser processing, and automating laser tooling of composite materials.

Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

You can find the LZH press releases with a WORD-download and when possible illustrations at under "publications/press releases"

Michael Botts | Laser Zentrum Hannover e.V.
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>