Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Components based on nature's example

06.10.2011
The exceptional strength of certain biological materials is due principally to their complex structure.

Long bones, for instance, consist of a compact, solid outer casing filled with spongy tissue, which makes them particularly strong and resilient. Researchers from the Fraunhofer Institutes for Mechanics of Materials IWM and for Environmental, Safety and Energy Technology UMSICHT are collaborating on a project entitled "Bionic Manufacturing", which aims to develop products that are lightweight but strong and economic in their use of materials – imitating the perfected structures found in nature.


The picture on the left shows a lightweight structure made of polyamide inspired by bionic principles. The picture on the right shows its detailed simulation on the computer. Credit: Fraunhofer IWM

The IWM scientists in Freiburg have taken on the task of identifying the best internal structures for manufactured components. "We have set ourselves the challenge of working as efficiently as nature: The finished component must not weigh more than necessary and yet still be able to perform its mechanical function reliably," explains Dr. Raimund Jaeger of IWM. This approach can be combined with a high degree of creative freedom: "Such components can be used to produce consumer goods with a high aesthetic value, such as designer chairs," adds Jaeger. And if by chance one of these bionically designed objects should break as the result of excessive loading, it will do so in a benign way – collapsing smoothly in localized areas rather than shattering into sharp splinters.

Whereas natural materials have evolved over numerous generations to reach the level of perfection we see today, engineers and product designers have to work much faster. The Freiburg research team has therefore developed a new design method. They start by constructing a virtual model of the future workpiece on the computer, filling out its contours with almost identical, cube-shaped, elementary cells. If the numerical simulation reveals that the grid structure does not satisfy requirements, the cell walls (trabecular microstructure) are refined accordingly. "We make them thicker if they are too weak and thinner if they need to be more pliable, or align them with the force lines along which the load is distributed," explains Jaeger. This method enables many different shapes to be designed around an inner cell structure that can then be evaluated and optimized using the simulation tool. To complement the simulations, the researchers carry out tests on real-life components to verify the structure's mechanical properties.

Jaeger reports that the method has worked very well every time they have used it to design any type of workpiece based on two-dimensional templates that can be pulled into the desired shape using the computer simulation. The same applies to components with a relatively regular shape. Despite their light weight, all of these components are very strong and resilient and capable of absorbing even substantial shocks. According to the scientists, they have potential applications wherever there is a need for products that combine a high level of mechanical stability and aesthetic appearance with low weight – for example medical orthopedic devices or anatomically formed body protectors such as lumbar support belts for skiers.

Fraunhofer UMSICHT is responsible for the technical implementation of the bionic design principles. The solution chosen by the project managers in Oberhausen involves the use of additive manufacturing techniques – in this case selective laser sintering of polymer materials. This technique enables workpieces to be fabricated by laying down successive layers of a fine polyamide powder, which are fused together in the desired configuration using a focused laser beam. It is the ideal method for creating complex internal structures and, at a later stage, components with a distributed pattern of material properties, which experts refer to as functionally graded materials. The resulting structures are similar to those observed in nature.

Raimund Jaeger | EurekAlert!
Further information:
http://www.iwm.fraunhofer.de

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>